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Abstract: Many control charting methods for both i.i.d and autocorrelated data can be viewed as
charting the output of a linear filter applied to the process data. We propose a generalization of
this concept, in which the filter parameters are optimally selected to minimize the out-of-control
ARL while constraining the in—control ARL to some desired value. A number of interesting

characteristics of the optimal filters are discussed.

1. Introduction

To this date, no control chart consistently
outperforms  the  others,  because  the
performance of control charts is substantially
influenced by the original process. Many
design methodologies have been proposed to
optimally select the sample size, sampling
interval, control limits, and parameters of the
control chart according to the underlying
process. In most researches, however, the
basic structure of the control chart has not
been a subject of investigation. As a result,
the inherent characteristics of the charted
statistics generated by the fixed structure of
control charts have limited improvement in
control chart design and performance. To
minimize the limitation, therefore, we propose
a control charting scheme, which we call the
general linear filter (GLF), based on
generalizing the concept of linear filters for
control charts that many control charting
schemes for both independently, identically
distributed (i.i.d.) and autocorrelated data can

be viewed as charting the output of a linear
filter applied to the process data. This
generalization is one of the main contributions
of this an optimal
design methodology for the proposed control
charting scheme is developed.

research. In addition,

To explain the linear filtering of control
charts, let y, = H(B)x, denote the charted
statistic, where t is a time index; x, is the
original process data; and H(B) = ho + ;B +
hB° + .. is a linear filter in impulse
response form with B denoting the time-series
backshift operator. Two simple examples of
this are a Shewhart individual chart and an
EWMA chart on x;. For the shewhart chart, y;
= x, with H(B) = 1 as the identity filter. For
the EWMA chart with parameter A, we have
vi = (1 = Dyn + Ax,, so that the filter is
HB =1 -{10-AB)1 A=4+ A4 — B
+ M1 — A)’B* + .... Residualbased Shewhart
and Exponentially Weighted Moving Average
(EWMA) charts can be viewed similarly if x;
is assumed to follow an Autoregressive
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Figure 1. Block Diagram Representation of a Linear Filtering Operation.

Table 1. Control Charts Based on Linear Filtering
Control Chart Charted Statistic Prefilter Linear Filter
Shewhart on  x, Ve =X No 1
EWMA on x =0 -Nys +Ax No Al-1-0B)"
Shewhart on e V= e = O(BYO(B) ', Yes 1
EWMA on e =0 ~MNyn +Ae Yes Al-(1-2)B)"!
ARMA(1,1) chart - -
ARMACLD chart | G-oB-gB)" No | (6,-6B)1-¢B)"

yi=(Q - k) y1 — ke(1 = B) yi1

PID Chart ko= BF vyt (LB x Ne (1= Bt - A=k = ky — kp)B = (kp + 26p)B* + kpB]

Note: In the PID chart, x, and y, are a disturbance and a PID-based residual, respectively.

Moving Average (ARMA) process model,
plus (potentially) an additive deterministic
mean shift, u, of the form
©(B)
Xy =——~a, + H,,
©(B) (D
where ¢ is a time index; g, is an 1iid.

Gaussian process with mean 0 and variance

O. denoted a, ~ NID(O, Os ); ®(B) =
(1 - $B - $B — - — $,B°) and OB) = (1
- 6B - 6B — - — 6,B% are the AR and

MA  polynomials of order p and g,
respectively. u, = 0 for the in-control process
and 4, #0 for the outofcontrol process. The
model residuals (i.e., the onestep-ahead
prediction errors) are generated via the linear
filtering operation

(B d(B)| ©(B
o™ "8 [cDEB; s }
=a, +M,u, =a,+H,,
O(B) )]
where H = D(B)/O(B)u, is just the filtered

version of the deterministic mean shift u,. We
may view this ®(B)/O(B) in Equation (2) as
a linear prefilter to the Shewhart or EWMA
filter, as shown in Figure 1 and Table 1.
Table 1 also includes the Proportional Integral
Derivative (PID) chart of Jiang et al. (2002),
which reduces to a third-order filter on x,

without a prefilter. The ARMA(1,1) chart of
Jiang et al. (2000) is a first-order filter on x,
with no prefilter.

With the whitening prefilter,
the dynamic structure of control charts can be
generally expressed by the following model
yr = H(B)e,
hoe; + men + he +

Tr
_ Zhje
- Jj=0 ’

therefore,

3
where H(B) is the GLF in design and Tr is a
truncation time large enough to approximate
hi = 0 for j > Tr. We use the residual-based
model in Equation (3) because it is more
convenient to work with and there is no loss
of generality if the ARMA model is stable
and invertible.

Based on the model in Equation (3), in
this paper, we treat the optimal design
problem of control charts as an optimal filter
problem. The impulse response
of the GLF are selected to
minimize the out-of-control Average Run
Length (ARL) subject to the incontrol ARL,
equaling some specified value. Section 2
discusses the calculation of ARL for the GLF
based on the Markov chain method and the
gradient-based numerical optimization strategy.
In Section 3, performance comparison between
the optimal general linear filters (OGLF) and

design
coefficients
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other control charts is given. Section 4
presents the main conclusions of this research.
2. Optimization Strategy for Filter Design

We use a gradientbased numerical
optimization strategy, which requires the
calculation of the ARL and its derivative. The
Markov chain approach (Brook and Evans
1972) is used to compute the ARL. Since the
v: in Equation (3) does not have the Markov
property, we approximate the distribution of y,
as that of a one-dimensional Markov process:

f)’z\)’z»l (St ISt‘l) = f)’,b’;_l,)’f‘z, """ (Stlst‘l’st‘z’.“) , (4)

where s, is a specific state at timestep ¢ and
S 1s the conditional probability distribution
function of y; given the previous state(s). The
approximation of the Markov property of the
charted statistic y, causes some discrepancy
between the approximated ARL and the actual
one. However, as will be demonstrated in the
results presented later in this paper, the
Markov  approximation still provides a
reasonable relative ARL comparison between
two different filters in the
procedure. We also use

optimization
Monte Carlo
precise  ARL
calculations are require, such as to guarantee
that the final OGLF really does have the
desired in—control ARL.
Because y, is generated as a linear
filtering operation on the Gaussian process a;,
v and y1 have the joint Gaussian distribution

|:J’t }~N|:/ut,y :|’ O’tz vzt
Yea Heay |l v, o4 , (5)

t-1

simulation when more

S hodi_
jHe- .
where Hvy = % ! is the mean
,1=2
o-a Z hjhj+1 . .
of y; v, = j=0 is the covariance

o} =c? til hjz-
of y, and y;q; and j=0 is the
of y. Then, the conditional
distribution of y, given y. is (Johnson and

Wichern 1998)

v - . 2
N(ﬁ,"*‘ t(yt 1 zluf l,y)so_tz_ V; J
o o) . (6)

variance

We set the control limits for y, at +1
without loss of generality, because all of the
impulse response coefficients of the GLF will
be scaled by the same value to account for
this. The in-control region (y;, inside the *1
mterval) is  discretized into N  equal
subintervals of length 6 = 2/N, and the out-of
-control regions are treated as a single
absorbing state. In Figure 2, 4; indicates the
subinterval for state j, and a; = LCL + (j —
1/2)6 is the midpoint of 4;. For the Markov
chain approach, the ™ row, jlh column
element (1<,j<V) of the transition probability
matrix at time ¢ for the nonabsorbing states,

denoted Qtij , 1s defined as

tlf =Pr{yr € 4 | yn = ai}. (7)
Wt
UCL = +1 Ay : state N
AN-] G Ans: state N-1
UCL = -1 F As: ostate 1

Onedimensional ~ State  Space
Discretized for the Markov Chain Approach.

Figure 2.

Following the analytical expressions of
Apley and Chin (2004), in this paper, the
ARL and its derivative with respect to filter
coefficient h; are approximated as

m-1
b1
ARL = ,,Z=1 P bl -0 1 and (8)
m-1 6 '
OARL = Z bp QP cp +bm[1_Q]'la—Qcm
Oh;  p=t © Oh; oh; 7, (9)

where m is a sufficiently large integer such
that Q, approaches a steady state value @

= On = Qu = by =
7 I1f3'Q = b,.0,1 with initial condition
by = Zo ,and ¢, = [1 + Qp1 + OpriQpr
+. 1 =1 + Qnewm with initial
condition ¢y = [T+ Q0+ 00 +-] 1 =1[I -
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OI" ! can be calculated
respectively.

In the optimal design procedure, the
impulse response coefficients of the GLF are
determined to optimally detect a specified
mean shift for the underlying process. The
information required to implement the
optimization algorithm includes the ARMA
model for the underlying process, the
magnitude and type (e.g., a constant step
shift, ramp shift, sinusoid, etc.) of the mean
shift of particular interest, a reasonable
starting point of the optimization search such

recursively,

as the Shewhart chart or the EWMA chart, -

and the desired incontrol ARL. The
optimization search starts from the user
specified starting point and continues in the
direction of the gradient to reduce the out-of
control ARL until it reaches an optimal
solution. Since the optimization algorithm has
numerous filter coefficients to search, the
utilization of the gradient information
improves the optimization routine remarkably.
Our analytical expressions in Equations (8)
and (9) for the calculation of the ARL and
its derivatives based on the approximation of

the Markov property in Equation (4)
substantially reduce the computational time,
thereby facilitating the practical
implementation.

3. Performance Improvement over the Optimal
EWMA

In this section, the residualbased EWMA
chart with control limits +1 is defined as
yr = (1 = Ny + ke, (10)
where 0 < A <1 is a constant; k is an
EWMA scaling constant; and the residual e
is the filtered version of x; as shown in
Equation (2). This section compares the
performance of the optimal EWMA with the
OGLF to show how much the charting
performance is improved by enhancing the
design flexibility — the design degree of
freedom in the filter design. Each impulse
response  coefficient of the GLF is
individually selected, whereas the impulse
response of the EWMA is determined by

only one parameters, A because k is adjusted
to provide the desired incontrol ARL. In this
sense, the GLF is more flexible in design
than the EWMA.

The detection capability of Residual-based
charts including the GLF significantly depends
on the form and magnitude of the residual
mean. For comparison, therefore, 28 examples
of  various processes (iid, AR(D),
ARMA(1,1)) and mean shifts (step, spike,
sinusoidal) are chosen to generate 7 different
type of residual means, according to which
the examples are divided into 7 groups. Each
group consists of 4 examples with different
mean shift sizes. Mean shifts are assumed to
occur at time ¢z = 1. The step mean shift is
defined as g4 = 0 for t < 1 and & = u for ¢
=1, where 4 is a process mean at time f.
The spike mean shift is defined as g = 0 for
t<1l, gg=pufort=1 and 1p = 0 for t =
2. Sy, S;, and S; in Table 2 indicate the
sinusoidal mean shifts with an amplitude of
750, and a period of 2, 4, 8 timesteps,
respectively. S4 has an amplitude of 1.50, and
a period of 8. For the 28 examples in Table
2, the GLF and the EWMA are optimally
designed to minimize the out-of-control ARL
while constraining the in-control ARL to 500.
Table 2 shows the ARL values obtained
based on a simulation with the 250,000
replications with the simulation standard errors
shown in parentheses.

The numerical results for all of the 28
examples in Table 2 show that the OGLF
outperforms or performs comparably with the
optimal EWMA in every case. The ARL
improvement tends to  become  more
substantial as the magnitude of the mean shift
increases. For some examples with a large
mean shift, the EWMA converges to the
Shewhart chart with A = 0 in Equation (10)
since the Shewhart chart is the most effective
form of EWMA for detecting large mean
shifts. In many cases, however, the ARL
performance of the Shewhart chart is also
significantly worse than that of the OGLF.
This is because the Shewhart chart focuses
only on the most recent observation, whereas
the GLF is designed to consider the transient
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dynamics and the steady state value as well.

The performance of the OGLF for
sinusoidal mean shifts is examined by
amplitude and period. The OGLF detects
sinusoidal mean shifts faster with shorter
periods and/or larger amplitudes. To sum up,
the OGLF outperforms the optimal EWMA in
17 of the 28 examples, and the reduction in
the outof-control ARL over the
EWMA reaches 96%.

optimal

4. Conclusion

In this paper, the concept of linear
filters for control chars is generalized and
the GLF is proposed as a control charting
scheme. In addition, we have developed a
methodology to optimally design a GLF in
accordance with the statistical optimization
criterion of minimizing the outof-control ARL
while constraining the in-control ARL to
some desired value. The ARL performance of
the OGLF is compared with those of the
residual-based Shewhart chart and the optimal
EWMA. The optimal linear filters
substantially outperform the existing control
charts in situations where their lower order
model  structures are an
optimization.

obstacle to
Especially with large
shifts, the improvement is remarkable.

No one chart consistently outperforms the
others. However, the significance of GLF is
based on their structural flexibility which
allows the derivation of a linear filter that
outperforms, or performs comparably to,
existing control charts such as the residual-
based Shewhart chart;, EWMA chart, and PID
charts. Because of the relationship between
the impulse response coefficients and the
residual means, the flexibility of the filter
structure plays a key role in determining its
performance. Therefore, additional flexibility
from a higher order filter guarantees better
detection capability for more kinds of mean
shifts. In other words, in this capacity, the
performance the OGLF is superior to other
existing charts.

mean

In the optimization procedure, the Monte
Carlo simulation is used to make up for the

Table 2. Comparison of the Optimal General
Linear Filter (OGLF) and the Optimal EWMA

Time Series
Model Shift
Type
No [4 @ (woy)
1 g 0 Step 5
2 0 g Step
3 0 0 Step
4 0 [7] Step
5 0 9 Step
6 0 9 Step
7 0 9 Step
8 0 9 Step
9 Q 9 Spike
10 ] 9 Spike
11 0 9 Spike

12 0 9 Spike

13 0 0 Sinusoid
14 [ 0 | Sinusoid
15 0 0 Sinusoid
16 0 [ Sinusoid
17 -9 9 Step
18 -9 9 Step
19 -9 9 Step
20 -9 9 Step
21 5 9 Step
22 5 9 Step
23 .5 9 Step
24 5 K Step
25 .5 9 Spike
26 5 9 Step
27 59 Step
28 5 9 Step

36)

the out-of-control

process.

inaccuracy in the ARL that is due to the
rough approximation of the Markov property
of the GLF. It significantly increases the
computational Apley and Chin
(2004) provide an alternative approach to

expense.
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reduce this weakness of the OGLF and
enable it to provide comparable charting
performance in many cases.
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