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Introduction

The concept of roll forming simply implies that the sheet
is formed through a filtration-type mechanism between
two fabrics. Here, dewatering occurs in two distinct steps.
In the first step, water and fine material are forced
through the wires by the initial momentum of the jet. In
the second step, water removal is achieved by the tension
and convergence of the fabrics. In both of these steps the
change in curvature of the fabrics generates a pressure
field to balance the fabrics’ tension. Early attempts to
characterize the hydrodynamics of twin-wire formers
were largely estimates of this pressure

1t is clear that the magnitude of the pressure gradient has
a significant effect on paper properties. Beyond this,
little is known about how the hydrodynamic forces
control material distribution and fibre orientation. This
raises the questions: (1) what is the magnitude of the
hydrodynamic shear requited to cause material
redistribution; and (2) how much shear is generate on an
operating paper machine? It is the latter question of
which we address in this work.

In this paper we consider:

1 The two-dimensional flow of fluid with
viscosity ¢ in a curved channel (see Figure 1).
The channel is bounded a Newtonian above (i
= 1) and below (i= 2) by flexible porous wires
of permeability £; .

2 The position of the upper wire g(s) is unknown
a priori and the bottom wire follows a
trajectory with radius of R. Dewatering occurs
through both boundaries over a distance R,
where 8 is the angle of wrap. The domain is
bounded by [r,s}= [R,R + g(s)}*[0,R4].

3 The channel has an initial clearance of g,. The
fabrics move at a velocity U,, and the initial
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velocity of the suspension U, is known. Motion
is induced by drainage through the fabrics and
is driven by the momentum of the jet and by
the tension 7 and curvature of the permeable
upper fabric.

4 The pressure P (rs) is assumed to be
atmospheric initially (P,) and reaches its
equilibrium value of 7/R at the end of the
domain.

5 The flow field has two viscous boundary layer
regions at the upper and lower boundaries. The
flow in the central core of the channel is
termed the outer flow and can be approximated
using potential flow theory.

Figure 1: A schematic of the geomtry considered. The
hatched lines indicate that the boundary walis
are permeable
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Model Equations

The model equations for this geometry are those outlined
by [Holm & Sdderberg (2005a)]. [Holm & Soderberg
(2005a)] posed the problem using the Navier-Stokes
equation in con-junction with the continuity relationship.
In their analysis, they reduced the equations of motion to
something more tractable by estimating the order of
magnitude of each derivative and eliminating the smaller
terms. In their notation, the dominant terms are given by
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where v, and v, are the velocities of the fluid in the
machine and radial directions, respectively. [Holm &
Soderberg (2005a)] did not explicitly discuss all the
boundary conditions required to solve this system of
equations. They did however discuss the force balance
on the upper wire required to determine its position, that
is

P-P = T(l g
R ds

We compliment the work of [Holm & Soderberg
(20052)] by including the other boundary conditions
required to solve the system of equations. Indeed, at the
lower boundary r=R we set

), r=R+g(x) C)]

v,=U, &)

v = v 6

where k, is the drainage resistance of the wire; and P, is
the absolute pressure in the roll. These conditions
indicate that there is no-slip in the machine direction and
that there is drainage or seepage normal to the permeable
wire. The drainage or seepage rate is described using
Darcy’s law. This, too, may be an oversimplification as a
higher Reynolds number expression, such as
Forcheimer’s expression may be more appropriate
especially at the point of jet impingement. We invoke
Darcy’s law for simplicity in order to avoid the inherent
non-linearity of the Forcheimer relationship. At the
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upper boundary, r= R+g(s), we set

vor U, )

y =Ph_y ®)
k, ds

where k; is the drainage resistance of the upper wire.
Again these equations indicate a no-slip and penetration
relationship is invoked at the upper boundary. Equation 7
is written as an approximation. This is done as the
boundary condition at this point is a combination of the
projections of the wire velocity and seepage velocity in
the O-direction. We have neglected the seepage
component as it is small in comparison to the sped of the
wire. In Equation 8, the first term on the right hand side
of the equation represents drainage through Darcy’s law.
The second term describes the fact that the permeable
wire is moving relative to the flow. At the left and right

ends of the domain

v,(r,0)=U,, P@Fr0)=P, P(r,RO)=T/R )
[ J a

Finally, It must be noted that the conditions at the
upstream and downstream locations may not be
completely accurate as the physics at these points have
yet to be properly described. For example, we impose an
upstream velocity profile and an initial gap size at the
point of jet impingement. We do so for simplicity.

Even with the simplifications discussed thus far, the
equations posed are still formidable. We follow the
reasoning given by [Holm & Soderberg (2005a)] and
consider that except in the immediate neighborhood near
the surfaces of the wires, the velocity distributions
deviate only slightly from those in frictionless (potential)
flow. This assumption will become apparent after we
scale the equations of motion. The transition from
potential flow to U, at the walls takes place over a very
thin layer, which we define in this work as the boundary
layer. In this manner there are two regions to consider,
even if the division between them is not sharp:

1. A very thin layer in the immediate vicinity of the
permeable walls in which the velocity gradient
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Ovy/Or is very large (boundary layer). In this region
the shearing stress v = udvy/Or may assume large
values.

2. In the remaining central portion of the domain no
such large velocity gradients occur and the
influence of the viscosity is unimportant. In this
region the flow is frictionless and potential.

In the subsequent sections, we shall obtain solutions in
these composite regions and then splice the solutions
together to create a composite view of the flow field. As

will be discussed encountered

subsequently, we
numerical difficulties when attempting to solve the

problem over the entire domain.

We shall now proceed to discuss the scaling of the
governing equations. The difficulty we have in this is
that we are unsure of the correct characteristic velocity.
For example we can scale the equations using a number
of reasonable candidates: U;, U,, U; —U, or even T/Rk.
We therefore take some time at this point rationalizing
the choice of this velocity. We begin this argument by re-
stating that the hydrodynamic pressure in this system
must be of the order P ~ T/R. If we choose the radius of
the roll R as the length scale, it is clear that the
magnitude of the pressure gradient in the machine
direction must be given by dp/ds ~ T/R’.

Upon examination of Equation 1, we reason that the
order of magnitude of the advective term (pvydvy /0s)
must be similar to that of the pressure gradient. This
argument is based on the fact that in the central portion
of the channel the viscous stress is negligible and these
are the only two remaining terms in the equation. If we
scale the velocity using

v, -U
*

U

W,

where U’ is the (unknown) characteristic velocity, and
equate the advective to the pressure term in Equation 1,
we see that U = T/pU’,R. For consistency with the
notation used in [Holm & Séderberg (2005a)] we define
where U" = g¢/We . The parameter We =pU°,g/T is
termed the Weber number and is a dimensionless group
introduced by [Holm & Soderberg (2005a)]. The second
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parameter ¢ = g/R is the ratio of the gap size to the
radius of curvature of the roll. As will be demonstrated
shortly, this parameter is much smaller than unity.
Finally, we need to define the order of magnitude of the
radial velocity v,. We do so by scaling this velocity
component using v,/V* where V* is the characteristic
velocity, and determine its magnitude by equating the
order of magnitudes of terms in the continuity
relationship, i.e. Equation 3. By doing so we see that

With our estimates given above, we can now scale the
model equations with the certainty that the magnitudes of
all terms are unity. If we set

U=vg_,,U“, V=_V,_” P=(P_Pa) (10)
U vV T/R
L el e I O] (11)
R o 8o

the governing equations become

£ U oP 1 0U
I+—U |—=—-—"+—— (12)
( " We j ox ox &Re &y°
2
we (1+LUJ _oP (13)
l+¢ey We Oy
U oV _, (14)
ox oy
The boundary conditions now read
d‘G (15)
px,G)=1-¢ =
Ux,G)=0 (16)
Vix,G)= LG _WedG (17)
a, & dx
Ux,0)=0 (18)
V(x,0)=L&9) 5 (19)
a2
G(0)=1 (20)
P0,6)=0 @1
U0, =", 22)
£
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P(6,G)=1 23)

Where
- U.-U
a= kgo , ﬂ: (Bz Pv)zWe’ —_J w , Re: prgo
VR kU.& U, u
(24)

and 0 is the angle of wrap.

Before proceeding onto solving this system of equations
it is instructive to examine the order of magnitude of the
dimensionless groups and to examine the behaviour of
the function G and its derivatives. Both of these points
give insight into the form of the mathematical solution
and aid in justification of the methods used. To begin,
this analysis indicates that there are 7 dimensionless
groups which govern the problem, that is, &, We, Re, a, f,
A, and 6. It is instructive at this point to estimate the
order of magnitude of each of these parameters at typical
operating conditions. This is given in Table 1. Of interest
here is that ¢ « 1 and the ratio of ¢ /We < 1 is a small.
These two points will be used in the numerical solution
given in the following sections.

£ We Re a B A 6
102 102 10° 10° 10° 10° 10°

Table 1: Estimates of the order of magnitude of the
dimensionless groups

Finally, the scaling of the equations of motion ensured
that the sizes of the various terms U, ¥, G and P were of
order unity. For completeness, we should examine the
order of magnitude of the boundary conditions. We start
this process by examining Equation 15. It is fruitful to
examine the implications of this relationship at the
upstream point x = 0. Here P = 0 which implies that

G _1
ax’ &

(25)

Hence the second derivative at x = 0 is very large. At x =
1 we use the boundary condition P =1 and show that

d’G

= 26
de 0 ( )
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Upon examination of Equation 17 we can deduce that
dG/dx ~ ¢ /We - a small number. Hence this function G
behaves in a very unique manner. These results indicate
that the size of the gap is of order of unity, its slope is
small over the entire domain, but its second derivative is

very large near x = 0.
Potential Flow - The Outer Solution

Boundary-layer-type behavior must result from the
solution of Equation 12 as (eRe)" «1 multiplies the
highest derivative. We anticipate a potential flow
solution in the central core of the channel and boundary
layer behavior near the permeable wires. In this section
we solve for both the pressure and gap size distribution
under the assumption of frictionless flow. We do so by
eliminating the second term on the right-hand side of
Equation 28. Even with this assumption the model
equations still have four unknowns, the velocity field U
and V, the pressure P and the gap size G. In this section
we will reduce the model equations to one high-order
non-linear ordinary differential equation for G. This
equation will then be solved both numerically and

approximately using asymptotic methods.

To begin, we seek a solution of the governing equations
by expanding U, ¥, P and G using a series of the form

_v[ £ ’ 27
@(x,y) ;(We} @, @7n

where ¢ is a variable representing one of the four
unknown in this problem. When terms with order 0(z)
and O(e/We) are eliminated, the leading order expressions

are
v, __OK (28)
Ox ox
We="0 (29)
oy
oUy , % _ g (30)
ox oy

The higher order terms in this expansion can be
determined using standard techniques. At this point in
the derivation we define the pressure field. This can be
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obtained simply by integrating Equation 29 and
evaluating the constant of integration through use of
Equation 15, that is

P(x,y)=1-eG_+We(y—G) (31

The first two terms of this equation indicate the pressure
change due to the change in curvature of the fabrics and
the third term is the centrifugal pressure. For clarity, the
subscript , has been dropped.

At this point we attempt to express the flow field in
terms of G. If the stream function is defined as

U,=y, V,=-y,

where the subscript , refers to ’potential flow’, the
pressure can be eliminated from Equations 28 and 29
through cross-differentiation leaving

Vi =0 (32)

This equation can be integrated directly, with use of
conditions 17, 19, 22, and 31 to give

v =a,(x)+ y(al (x)+&/1) (33)
&

ao(x)=—f(aL(1—WeG—anx)+,B]dx €2

2

= | 1 1 We We
a,(x)= La(g[—a—-—a—]Gn +?Gx —;——G+7}dx
1 2 2

(35

L T (36)
a o

Finally, we can derive an expression for the gap size
through substitution of Equations 31 and 33 into 28

£GG,, —g(l—i)(;n +We(G—l)Gx o y-o
o £ a,

37
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The boundary conditions for this relationship are as

follows

G(0)=1 (38)
G (0)=1/¢ (39)
G.(6)=0 (40)

Equations 39 and 40 were obtained through use of
Equations 21, 23 and 31. Equation 37 has been solved in
two different ways:(a) as a standard boundary value
problem using MAPLE (a commercially available
symbolic solver) and (b) using a traditional singular
perturbation expansion method. The resulting expression
is given by

& e,
G(x)z1+——[1—}’+e ¢ j (1)
We

From this we can estimate the pressure at the surface of
the wire P,, and the suspension velocity U,

e
F,=l-e ¢ (42)
U (x)=&/1+fl £ 11 GXX+EGY——W—/5+;/
g £ Gl \a a, e T a

(43)

The results from the numerical solution and the
analytical expression are compared in Figures 2 -5 and
good agreement is apparent. What is evident is that there
is an entrance region where pressure increases rapidly
and then an ’established flow” region where the pressure
is essentially constant. In the established flow region, the
gap size varies nearly linearly. The length of the entrance
region x; can be estimated from Equation 42. If we
define the entrance region as that where the pressure is
less than 0.99, we see that

x, = 46— (44)

Jwe

These results are strikingly similar to the measurements
reported by {Gooding, McDonald & Rompre], [Hergert
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& Sandford], and [Martinez]. What is different between
our results and the previously reported experimental
work is the pressure wave reported at the end of the
forming zone. We too can generate this waviness if we
let the drainage resistance o vary as a function of x.

The error in using the analytical expression is compared
to the numerical results, see Figure 5. The error in this
shows the relative error in comparison to the numerical
result. It is clear that under the industrially relevant
conditions, the error in using this expression is at most
5%. Because of this, we recommend the use of the
analytical solution to determine the gap size.
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Figure 2: Estimate of the gap and pressure distribution
P, as a function of We. The full numerical
solution is shown as the symbols and the
approximate asymptotic solution as the
hatched line. The simulations were conducted
with € =0.02 and y=1.
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Figure 3: Estimate of the gap and pressure distribution as
a function of &. The full numerical solution is
shown as the symbols and the approximate
asymptotic solution as the hatched line. The
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simulations were conducted with We = 0.1 and
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Figure 4: Estimate of the gap and pressure distribution as
a function of v. The full numerical solution is
shown as the symbols and the approximate
asymptotic solution as the hatched line. The
simulations were conducted with We = 0.1 and
£=0.02.
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Figure 5: An estimate of the error of the asymptotic
expansion with the numerical solution. The
comparisons are made with y =1

Estimate of the Viscous Stress

In this section we estimate the viscous stress in the
boundary layer through solution of Equation 12. Like
most boundary layer type solutions we do so by
imposing the pressure field, as given by Equation 31, on
the boundary layer regions. We solve this relationship
using singular perturbation methods as we can obtain an
analytical expression. The analysis will be conducted
over both boundary layers : first at y = 0 and then at the
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upper boundary y = G(x).

We consider the boundary layer near y = 0 and seek a
solution to Equation 12 using an equation of the form

U(x,y;eRe) =U ,(x) + w(x,7) 45

where 77 =+/&Re . Upon substitution of this in Equation
28 we see that w(x, 7) must satisfy

_a_W_ — 62W (46)
ox o

w(x,n =0)=-U(x) 47
w(x, —>0)=0 (48)
w(0,7)=0 (49)

when terms with order less than &/We have been
eliminated. The solution to this is given in standard
mathematics text books, such as by [Greenberg], and is

_n ¢ U, g
w(x,n) = 25]{) Gy (50)

In this work, we do not evaluate this expression given
above. Instead we solve for the flow field of the simpler
problem, Equation 46 using MATLAB’s built in
solver *pdepe’. We do this as it is very easy to implement
this equation into this solver and the resulting profiles are
sensible. The stress T (having dimensions of P,) at # =0
can be evaluated numerically from this expression

#U, " JRe 0w (51)
R We 0On

T =

Similarly at y = G(x) we seek a solution of the form
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U(x,y;6Re)=U ,(x)+ h(x,0) (52)

where o = (G(x) — y)eRe. Upon substitution of this in
Equation 12 we see that w(x, 7) must satisfy

o'h _ o Oh (53)
do? "oo

h(x,0 =0)=-U,(x) (54)
h(x,0 > ©)=0 (55)
This gives

h(x,0)=-U,(x)e® (56)

It should be noted that this equation is exact when the jet
speed equals the machine speed, that is when 2 = 0. If 4
# 0 the solution is incorrect in the very small region
where (x, 0) — 0. This can be corrected for using the
method outlined in Appendix A. This analysis shows that
the error occurs over a region in space 0 < x < I/eRe.
With this in mind, the stress t (having dimensions of P,)
at y = G(x) can be evaluated using

2
MU ERe Gy, x>(sRe)T (D)

T
R We * 7

Estimates of the shear stress acting on the surfaces of the
permeable wires are shown in Figure 6. What is evident
is that the shear imposed is asymmetric in that the stress
on the upper wire is far greater than that on the lower one.
This was found for all cases simulated. Further, the stress
on the upper wall displays a maximum whose location
can be determined by setting the first derivative of
Equation 57 equal to zero.

4e’We

__£ (58)
X = In n
2We yel —eWe + AW e’

Finally, the magnitude of the stresses are small yet of the
same order of magnitude of the disruptive stress of
networks reported by [Raiskinmaki & Kataja]
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Figure 6: An estimate of the stress acting on the upper
and lower boundaries along the length of the
machine. This simulation was conducted with
eWe=02,a,=0a;=1,=0,and U= U, =
1000/60 m/s.

A Estimate of the Stress in the region (x, 6) — 0

In this region, we expand the function G(x) using a

Taylor series approximation asx — 0, i.e.

e jx (59

&
Gx)=1+—| —+
) We[ . 7

and seek a solution of the form

U(x,y;6Re)=U (x)+ h(x,0)+Q(5,0)
(60)

where £ = xcRe. Upon substitution of this in Equation 28
we see that Q(& #) must satisfy

20 G ()22 - 22 (61)
o0& 0o oo

0(5,0=0)=0 (62)
0(¢,0 > ©)=0 (63)
0(0,0)=U ,(0)e’ " (64)
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This can be solved using standard techniques.
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