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Abstract - This paper presents a new methodology to calculate
an optimal solution of equilibrium to power system differential
algebraic equations. It employs a nonlinear interior point method
for solving the optimization formulation, which includes dynamic
equations representing two-axis synchronous generator models
with AVR and speed governing control, algebraic equations, and
steady-state nonlinear loads. Equilibrium optimization (EOPT) is
useful for diverse purposes in power system analysis and control
with consideration of the system frequency constraint.

1. Introduction

Power systems should be operated within a region of security,
which is constrained by both operation and security limits {1]. In
the early 1960's, the concept of optimal power flow (OPF) was
introduced [2], which pursues economic dispatch solving the
power flow equations. This tool can also be useful for correction
of static security for the systems in contingent states [2-4).
However, power systems can be modeled with a set of
differential-algebraic equations (DAEs) [5], assuming that
electromagnetic transients are decomposed out. There naturally
exists difference of the results depending on whether or not it
considers dynamic aspects, even when focusing on system
equilibrium.

This paper presents a new methodology to determine an
optimal solution of equilibrium to power systems'DAEs. The
formulation of equilibrium optimization (EOPT) contains dynamics
of the two-axis generator model, automatic voltage regulation
and simple speed governing control, and includes the network
equations and static nonlinear loads. To solve the formulation, in
this paper, a nonlinear interior point method (NIPM) is employed,
which a Newton-type method with log-barrier penalty functions
for coping with the inequality constraints. In EOPT, the system
frequency constraint can be included, so using EOPT, controls
satisfying the acceptable frequency change can be obtained with
a certain objective function. In case study, two examples of
active and reactive power dispatch are given with a 6-bus test
system to show the usefulness of EOPT.

2. EOPT Formulation and Solution Technique

The EOPT formulation can be expressed in a brief form as
follows:

min f(x,y,u, p)
st hp(x,y,u,p)=0
ha(x,y,u, p)=0
&min < &(X, Y, U, P) < Emax

where x, y, u and p denote the vectors for state, algebraic, contr
ol variables and parameters, respectively. In (1), f{-) represents re
present the objective function. hp(-) and ha(-) stand for the functi
on vector of the equality constraints for differential equations and
algebraic equations, respectively. g(-) is the inequality function ve
ctor for operational and parametric limits, and gmax and gmin are t
he upper and lower limits of g{-) respectively.

The difference of (1) from the formulation of the conventional
OPF is inclusion of the equilibrium equations for dynamic models
(hp(-)=0). For synchronous machines, this paper makes use of the
dynamic models in [6] in EOPT implementation, and they include
the two-axis synchronous generator model with AVR and speed
governing control. For load representation, active and reactive loa
ds at bus {, Py and Qu are modeled as follows:

oY)

Py =Py Vi)™
01 = QoW 1V )P @2b)

where Pi, and Qi denote active and reactive power load at the
nominal voltage Vi, 4 and £ are the constants for voltage
dependency of the active and reactive load.

EOPT incorporates the following objective function:

fO)= ZWPgsi(Pgsi - P;si)z + Zereﬁ(Vreﬁ -

ieSG ieSG
where S¢ indicates the set of generators in the system, and wegsi
and wvr denote weighting factors for control of Pgsi and Vies.
These two are designated real power generation and reference
voltage of AVR of generator {. The superscript 0 represents the
initial value of each control variable.

EOPT solves the optimum of (1) with a nonlinear interior
point method (NIPM). NIPM is one of Newton-type methods,
which finds a solution satisfying the Karush-Kuhn-Tuker (KKT)
first-order optimality necessary condition. NIPM first introduces
slack variables (>0) to make inequality constraints to equality
ones; then, it establishes the Lagrange function which includes
the objective function, the functions of the total equality
constraints, and a scalar log barrier function of the slack
variables. For (1), the Lagrange function can be expressed as
follows:

L(z,51,8y,Aps Ags 7,y ) = f(2)
— A hp(2) =L hy(2)

(2.a)

)

~ 71 (2(2)~ S, ~ Zmin)
- 25 (8(2) + Sy ~ Emax)

- u(ZlnsL,- +Zlnsu,-)
i i

where the following notations are made:

z: the state vector (z2{x y u p]' in (1)),

si: the lower slack variables vector for the lower limits of g(-),

su: the upper slack variables vector for the upper limits of g(-),

ip: Lagrangian multipliers vector for hAp(-)=0,

la: Lagrangian multipliers vector for ha(-)=0,

1. Lagrangian multipliers vector for g(:)~s.~gmin=0,

1y Lagrangian multipliers vector for g(-)~su~gmax=0,

£ barrier parameter.

The procedure of NIPM for solving the optimum is outlined as

follows:

Step 1: Initialize the primal and dual variables.

Step 2: Compute the complementary gap, G¢, and power flow
residuals. If the gap and the residuals are less than the
given tolerances, stop.

T T
G.=nm, 5, +7ys,

(4)

Step 3: Set the barrier parameter with the following equation:
c
2n.

where n¢ is the number of constraints and ¢ (0<c<1) is
the centering parameter introduced in [7].

Step 4: Construct the linear system in (7) and solve the correcti
on vector. With (6), obtain s, sv, %, and 7.

Step 5: Determine primal and dual step length without linearly
violating the constraints.

Step 6: Update the primary and dual variables and go to Step 2.

p=c
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3. Numerical Results
This section describes an example demonstrating the
usefulness of EOPT with 6-bus test-system. Fig. 2 shows the

one-line diagram of the system with line reactance data. Table I
and II shows the load flow data of the base case and generator

data in use, respectively.
3
j0.133 B

0.724+1 08

1 4

0.08+{0.37

0.1230.518
3.097+0.407

0.3
§ ;

j 0.282+j0.64

initial values. These limits provide the reason of active power
dispatch. This simulation applies the same range for per-unit
system frequency, 0.999 - 1.001.

Using the same stopping rule as in reactive power dispatch, the
simulation takes 12-iteration to obtain the solution, and it is
within the active power flow constraints. The binding constraint
is the per-unit system frequency limit. Table VI shows the
network variables at the solution. Reactive power generation at
each generator is not that changed, compared to the result in
Table VI, but active power generation is much more
re-dispatched. At the solution, the rotor angle of generator 1 is -
0.31745489 {degree] and that of generator 2 is 0.1202430 [degree].

{Table V>
dispatch

Network variables after EOPT-reacitve power

- by - Bus # Volt Angle Py Qu Pe Qe
[pu] [degree] | [MW] | [MVAr] | [MW] [ [MVAr]
. . 1 1.0907 -174 . . 96.98 50.36
<Fig. 1> One~line diagram of 6~bus test system 5 TR o0 - - 2507 1151
(Table {> Load flow data of the base case 3 09390 -10.77 55.00 13.00 . .
Busé Volt Angle P Q Pg Qs 4 0.9633 742 . .
[pu] | [degree] | IMW] | [MVAr] ) IMW] | IMVAr) 5 09000 | -1013 | 3000 18.00
1 1.0500 0.00 - . 96.98 6239 6 09426 972 50.00 500
2 1.0000 -0.42 - . 50.06 743
3 0.9510 -13.27 55.00 13.00 . - (Table V> Parameter setting in active power dispatch
4 0.8926 -9.98 . . Gen. 0 min T 0 win mex
5 | 08478 | -i252 | 30.00 18.00 g b Fy Py i " i
6 0.8753 -12.43 50.00 5.00 1 0.9698 0.6000 1.5000 1.127693 1.166 1.168
<Table H> Generator data of the system 2 ] 05000 | 03000 | 10000 | 1.058023 | 1.102 | 1.104
Gen {Table VI> Active power fiow limits of the three selected lines
4 X4 Xq Xd' Xq Rs Tdo' Tago' and thelr intial fiow
T ] 0995 | 0368 | 0195 | 0368 | 0 | 108 | 05 Line Fou [MW] | Fmax [MW] | Flow [MW]
7 10615 | 0134 | 6238 | 0365 ) 74 05 i-4 40 40 50.8
D H | MVA | Re Te Se Xa 1-6 40 40 44.5
1 0 641 | 200 1 625 | O 20 2-3 -30 0 319
3 ) 38 113 1 025 01 50 é}'sa:altech V> Network variables after EOQPT-active power
1 03;?6 0K0f4 l;f .i‘c: ;Jrg2 OROgS V";’ax Bus# Vol Angle B & Fo %
2 0'06 0‘04 1 1'6 072 0'05 3 [pe] [degree) ¥ LALS) Ll LAL!
- . - - 1 109801 -14.47 . . 73.05 60.12
2 1.0406 -2.68 . . 78.82 12.20
3.1 Reactive power dispatch with V., 3 09089 | -2364 5500 13.00 . .
As seen in Table I, voltage magnitudes of bus 4, 5, and 6 are 4 0.9456 2093 . .
below 0.9 [pul, so this study first performs reactive power 5 0.8612 2002 3000 18.00
dispatch of the two generators using control of Ve to enhance 5 0.9266 | -22.50 50 00 500

voltage profile such that all the bus voltages are within the
range of 0.9-1.1. For this purpose, weighting factors of wpes are
set to 0, and weps to 100. Table HI shows other settings of
parameters associated with the objective function, From Table I,
one can notice that V.y of each generator is the main control
measure, and that each Pgs is able to slightly change within the
corresponding range. The role of Pgs is closely related to system
frequency in equilibrium, and in this simulation, the used the
upper and lower limits of per-unit system frequency are 0.999
and 1.001.

<Table 1lI> Parameter setting in reactive power dispatch

Gen 0 : 0
# F g F gx?m F gl:smx Vrgf Vr!a}m r:;x
1 0.9698 0.9598 1 09798 1.127693 1.0 1.2
2 0.5000 04900 | 05100 1.058023 1.0 1.2

The simulation takes 1l-iterations to obtain the optimal
solution that satisfies the stopping rule with thetolerance of the
complementary gap and the maximum mismatch in equality
constraint. They are set to 10-5 and 10-4, respectively. EQOPT
provides the optimal setting of Vref for generator 1 and 2, they
are 116671285 [pul and 1.1023135 [pul, respectively. Table IV
shows the status of network variables after the simulation. The
system voltage profile is improved, so active power generation is
slightly reduced, and the voltage constraint of bus 5 is bounded.
From Table IV, one can notice that voltage angle of bus I,
which was the slack bus in Table I, is now changed to -1.74
{degree]. The reason is that in EOPT the reference angle is the
rotor angle of bus 2. The per-unit system frequency after EOPT
execution is 1.0004988, which is within the designated limit

3.2 Active power dispatch with Py

In the second simulation, active power dispatch using Py is
performed. Table V shows the setling of the objective function
related parameters for this simulation. Table VI describes the
limits of active power flows of three selected lines and their

4, Conclusions

This paper presents a methodology to calculate an optimal
solution of equilibrium to power system differential algebraic
equations. The formulation of EOPT incorporates the equality
constraints, equilibrium equations of dynamic models and the
network equations. To solve it, EOPT employs a nonlinear
interior point method. In case study, this paper shows illustrative
examples of active and reactive dispatch directly using control of
the designated real power generation, Py, and AVR reference
voltage, Vrs in dynamic models. EOPT can provide control
sirategies with consideration of the system frequency constraint.
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