Seminar of KOPAST

# Application of Nanotechnology to Packaging



Department of Packaging Jai Neung Kim, Ph.D.



### 나노입자의 특성

1. Effect of Surface Area

| Particle sizo (nm) | Number of atom. | Surface eloin (%) |
|--------------------|-----------------|-------------------|
| 10                 | 30,000          | 20                |
| 5                  | 4,000           | 40                |
| 2                  | 250             | 80                |
| 1                  | 30              | 99                |

- 2. Increase of Strength, Transparency, Elasticity
- 3. Effect of Magnetic Properties

Department of Packaging (2)



나노소자의 특징 광학적 특성 □ 광학스펙트럼 blue-shift ○ 반도체 발광효율 증가 화학적 특성 □ 살균력, 자가세척력, □ 냄새제거 Packaging 기계적 특성 Application □ 경도 및 강도 증가 □ 연성, 인성, 가공성 증가 전기적 특성 □ 전기전도도 증가(세라믹) 전기저항 증가(금속) 자기적 특성 의 임계 크기까지의 보자력 증가 의계크기 이하에서 보자력 감소로 인한 초상자성 거동 Department of Packaging





## 나노입자 생성기술

Bottom-up vs. Top-down

#### Top-down manufacturing

- Traditional approach
- Take away material until what \* Add material until the is left is the product Eg. Sculpting



#### Bottom-up manufacturing

- Nanotech approach
- product has been created Eq. Biological systems



Department of Packaging



# 나노입자 생성기술

- ₩ 입자생성기술
  - □ 유기/무기/금속
- 입자크기조절기술
- ※ 입자복합화기술
  - a Dopping 기술
  - a 캡슐기술
- ₩ 나노입자 모양조절 기술
- 입자증착기술
  - a 금속입자증착
  - □ 무기입자중착





Department of Packaging (2)











#### 패키징의 나노기술의 용용사례

- **Enhanced Properties** 
  - Improved mechanical or gas barrier properties
  - Better temperature or chemical resistance
  - Enhanced clarity and surface appearance
  - Better conductivity
- Protect packaged product Properties
  - Longer shelf life
  - Printable electronics
- Enhanced Functional Properties Thinner films
  - Anti-microbial
  - Sensory packaging
- **Environmental Friendly Properties** 
  - Thinner Film
- Brand protection

Department of Packaging (2)



Nanocomposite PKG applications Matrix resin Nano filler Bayer AG (Durethan LPDU) Nylon-6 Organoclay Barrier film Clairant Polypropylene Organoclay Packaging Nanocor (Imperm) Nylon MDX6 Organoclay PET beer bottles Source: Plastics Technology Online and Bins & Associates Oxygen transmission of nylon nanocomposite Department of Packaging (2)

### Nano-PKG Application

- Mechanical Properties Enhancement
- Printina
- Food application
- Micro-sensors

Department of Packaging (2)



## Future Study for Nano-PKG

- Nanotechnology to enhance the properties of renewable packaging materials. Applications and research areas would include:
  - Nano reinforcement -using nanotech in fibre engineering to enhance the strength of board and thus reducing materials
  - Nanocoatings-to enhance barrier properties
  - Nanocomposites
  - Nano barcodes and taggants -for track and trace and brand protection of packaging
  - Nano technology in paper -like electronic displays-which can be used to display information to the retailer/consumer about the freshness or condition of the product.
  - Intelligent inks -nanotech-enabled oxygen indicators

Department of Packaging (2)



### 나노포장기술에 관련된 산업

- Producers of packaging materials
  - paper, rigid and flexible plastics, labels, glass, metals, foils and composites
- Packaging manufacturers and converters across all materials and end uses
- Packaging and label printers
- Coatings, adhesives, inks and other packaging chemicals suppliers
- Package print equipment manufacturers
- Packaging machinery suppliers
- Packaging buyers from brand owners and supermarket retailers
- Suppliers of nano-materials
- Governments, research institutes, academics who are active in the field of nanotechnology

Department of Packaging (2)



### 노포장기술의 활성화의 장애

- 포장시장의 한계(가격)
- 연구개발비의 한계
- 연구인력의 한계
- 시장규모의 한계
- 새로운 해외시장 모색의 한계

Department of Packaging (2)

