열처리시 Si 기판과 zirconate 박막 사이에 형성되는 다충 구조 분석 Interfacial multi-layer formation between a thin zirconate film and a silicon substrate during thermal treatment <u>허재성</u>[†], 최훈상^{*}, 백상열, 손창식^{**}, 최인훈 고려대학교, ^{*}RIKEN, ^{**}신라대학교 (Jshur@korea ac kr[†]) The ultrathin zirconium oxide films were grown with various gas flow ratios (O_2 -Ar) by r.f-magnetron sputtering to investigate the interfacial properties between ZrO_2 thin films and S_1 substrate by heat treatment. The stoichiometric ZrO_2 films with the smooth surface could be obtained by controlling oxygen ratio to argon. The Zr-free S_1O_2 interfacial layer thickness abruptly increased at the annealing temperature of 750° C, due to rapid oxygen diffusion through the ZrO_2 . Also, the Zr silicide layer was observed between ZrO_2 and Zr silicate by X-ray photoelectron spectroscopy (XPS). This is explained by excess S_1 due to rapid diffusivity of S_1 into the structure resulting in forming the silicide layer on Zr silicate.