P-150 ## CeO₂ 인충충을 이용한 SrBi₂Ta₂O₉ 박막의 식각 정지 특성 Etch Stop Characteristics of SrBi₂Ta₂O₉ Thin Film by Using CeO₂ Buffer Layer <u> 권영석</u>[†], 심선일, 김용태^{*}, 최인훈 고려대학교, ^{*}한국과학기술연구원 (kwonys@kist re kr[†]) Etch stop process of $SrB_{12}Ta_2O_9(SBT)$ over CeO_2 in the Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE) was reported in this paper. The etch stop of ferroelectric thin film on the silicon surface without damage is important for the process of the self-aligned gate structure in the fabrication of Single Transistor Type Ferroelectric Random Access Memory. The high vertical etching angle is also necessary for high integration. We investigated the etch rate of SBT, Si and CeO_2 which were used as a buffer layer to improve the interface between SBT and silicon with various Ar/Cl_2 gas mixtures, ICP powers and RF bias powers in the ICP-RIE. The highest etching selectivity of SBT/CeO₂ and SBT/Si was 6.8 and 0.3 respectively. The vertical angle of SBT was 82 degree. The SEM images and XPS surface analyses showed good etch stop characteristics of the buffer layer without damage of silicon surface.