In₂O₃ 와 Sn-doped In₂O₃ 의 전자 상태 계산 연구 A study on the electronic structure of In₂O₃ and Sn-doped In₂O₃ <u>김민정</u>[†], 김양수, 전영아, 김성관, 백한종, 김영하, 노광수 한국과학기술원 신소재공학과 (kmi@kaist ac kr[†]) Indium oxide film has been widely used for transparent electrodes of solar cells, display devices, etc. A number of research about indium oxide has been made experimentally but few for electronic structure calculation of In_2O_3 has been made theoretically. We investigate the cluster size effect on the electronic state calculation because the band gap is changed with the size of In_2O_3 cluster models. As the size of In_2O_3 cluster increases, calculated band gap is closed to that of In_2O_3 thin films. Thus, it is needed to calculate electronic structure of In_2O_3 clusters and establish an optimum cluster model by comparing the calculated band gap with experimental After that, the doping effect of Sn on the electronic structure is calculated using Sn-doped In_2O_3 cluster models Sn-doped In_2O_3 (ITO) has lower resistivity and higher transmittance (> 85%) in visible light region than the other transparent conductive oxide films such as SnO₂, ZnO, etc. In this research, the electrical and optical properties of Sn-doped In_2O_3 (ITO) is analyzed using the calculated electronic structure of ITO Sn-doped In_2O_3 (ITO) will be used as a reference material to compare the doping effect of other dopants such as Pb, Zr, Mg, and Zn, etc. on the electronic structure in next research