Acetylacetonate 와 결합된 Ti 전구체로부터 BaTiO₃ 제조 및 유기 용매 분산 특성 Preparation and dispersion of BaTiO₃ prepared in solution from acetylacetonate derived Ti precursor Nimai Chand Pramanik, Sang Il Seok[†], Bok Yeop Ahn, Hoon Kim Korea Research Institute of Chemical Technology (seoksi@pado krict re kr[†]) Preparation of BaTiO₃ has received much current interest because of its very high dielectric constant value. In this present study we described the preparation of BaTiO₃ nano-crystals in solution phase from acetylacetonate derived sols. Titanium tris-acetylacetonate [Ti(acac)₃]⁺ was slowly added into the aqueous solution Ba(OH)₂ and then it was stirred at 50-110°C for several hours. X-Ray diffraction studies of the air-dried samples showed that crystalline BaTiO₃ was formed in solution in presence of relatively high Ba(OH)₂ concentration. Microstructures of the samples studied by transmission electron microscopy (TEM) further supported the existence of BaTiO₃ in the polycrystalline form. The formation of crystalline BaTiO₃ was studied in terms of reaction temperature and the Ba/Ti molar ratio and a plausible mechanism was also proposed. Crystal sizes of the BaTiO₃, calculated from the XRD results were in the range 33-50 nm, while the average particle sizes, measured by dynamic light scattering method were found to be in the range 70-100 nm. The dispersion of the BaTiO₃ was studied in N-metyl-2-pyrillidone at room temperature and it was observed that the dispersibility of BaTiO₃ crystals enhanced by the presence of acetylacetone