Metabolic Engineering of L-Valine Production *Escherichia coli* W3110 and Its Combined Transcriptome and Fluxome Analysis

Jin Hwan Park¹, Kwang Ho Lee¹2, Tae Yong Kim¹, Sang Yup Lee¹2
¹Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering and ²Department of BioSystems and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea, ³R & D Center for Bioproducts, Institute of Science & Biotechnology, CJ corp., Kyonggi-Do 467-810, Korea
TEL: +82-42-869-5970, FAX: +82-42-869-8800

Abstract

We constructed L-valine production strain with *E. coli* W3110 by targeted genetic modification and identified the effect of the biosynthesis of L-valine on cell physiology by combined transcriptome and fluxome analysis. The L-valine-producing strain was constructed by releasing two regulatory mechanisms, feedback inhibition and attenuation. Two amino acids alterations were introduced into *ilvH* which is subject to feedback inhibition by using site-directed mutagenesis. The leader region of *ilvGMEDA* and *ilvBN* operon which is involved in attenuation was changed with the strong tac promoter by homologous recombination. *ilvA* was deleted for the prevention of L-isoleucine synthesis resulting in increased pyruvate availability for L-valine biosynthesis. Further improvement of the L-valine-producing strain was achieved by knocking out *leuA* and *panB* thus making more ketoisovalerate available for the L-valine biosynthesis. With this strain 21.5 mM L-valine was accumulated within 18 hours of batch fermentation. Combined transcriptome and fluxome analysis during the biosynthesis of L-valine reveals that an increased pyruvate and ketoisovalerate availability is essential to direct the flux into the L-valine biosynthesis. Furthermore, target genes for further metabolic engineering can be selected from the combined analysis data.
Acknowledgements

This work was supported by Korean Systems Biology Research Grant (M10309020000-03B5002-00000) from the MOST and by the Brain Korea 21 Project. Further support through the LG Chemicals Chair Professorship is appreciated.

References