Structural Implications of C-terminal regions of alpha-synuclein.

Kim Doohun (DOOHUN KIM), Kang Mira (MIRA KANG)
Department of Bioengineering, AJOU UNIVERSITY

The aggregation and fibrillization of \(\alpha \)-synuclein, a major component of Lewy Bodies (LB), is an important event in the development of Parkinson’s Disease (PD). Although the mechanisms of protein conformational changes of \(\alpha \)-synuclein leading to amyloid fibrils are largely investigated, the function of \(\alpha \)-synuclein in vivo is not yet clearly elucidated. Protein sequence analysis has shown that C-terminal regions \(\alpha \)-synuclein has amino acid sequence similarities to \(\alpha \)-crystallin and other small heat shock proteins (sHSPs). Based on its primary sequence analysis and highly flexible conformation, we have investigated the functional similarity of \(\alpha \)-synuclein to sHSPs. In our experiments, \(\alpha \)-synuclein could inhibit the aggregation of various \(E. \ coli \) cellular proteins during heat stress and C-terminal deletion mutants could not provide any protection to these cellular proteins. \(\alpha \)-Synuclein could also protect the catalytic activity of model enzymes during cold stress. In addition, we have shown that expression of \(\alpha \)-synuclein was able to confer a cellular tolerance to \(Escherichia \ coli \) against thermal- and oxidative-stress. Interestingly, extracellular addition of \(\alpha \)-synuclein could also protect HEK 293 cells against oxidative stress. It is suggested that C-terminal regions might have a role in regulation of this protective function through ligand binding. In conclusion, our results suggest that \(\alpha \)-synuclein, like other small heat shock proteins, could protect cellular proteins from thermal and oxidative damage, which finally leads to resistances to thermal- and oxidative-tolerance to cells.