Functional expression of fungal peroxidase (*Coprinus cinereus* peroxidase) in *Pichia pastoris* and characterization

Dong Seok Yun¹,², Bo Young Lee¹, Hyun Seong Jeong¹, Yong Hwan Kim², Bong Keun Song¹, Beom Soo Kim³

¹Korea Research Institute of Chemical Technology
²Dept. of Chemical Eng, Kwangwoon University
³Dept. of Chemical Eng, Chungbuk National University

Peroxidase has many applications such as polymerization of phenolic compounds and waste water treatment. A cDNA encoding for a peroxidase was isolated from the fungus *Coprinus cinereus* by RT-PCR. It contains an open reading frame of 1092 bps. The deduced mature protein consisted of 344 amino acids and was preceded by a signal peptide of 20 amino acids. The cDNA was cloned into the pPIC₉Z a A(wCiP) and expressed in the *Pichia pastoris* X-33. Peroxidase-secreting transformants were selected by their ability to oxidize the substrate 2,2′-azinobis-3-ethylbenzthiaioline-6-sulfonic acid (ABTS).

While wCiP activity of *P. pastoris* grown in flask was only 120U/mL, in bioreactor on the optimized condition, extracellular wCiP activity was a maximum of 1151U/mL. And the Rz value of purified wCiP using SEC was measured 0.843, which was comparative with that of CiP from wild *Coprinus cinereus* fungi.