Coenzyme Q₁₀ production by coexpression of the *ddsA* and *dxs* in recombinant *Escherichia coli*

Jin-Ho Choi^{1,2}, Soo-Jung Kim1,, Suk-Jin Ha³, Yeon-Woo Ryu⁴ and Jin-Ho Seo^{1,2}.

¹School of Agricultural Biotechnology, Seoul National University, Seoul, Korea

²Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea

³BioNgene company. Ltd., Seoul, Korea

⁴Department of Molecular Science and Technology, Ajou University, Suwon, Korea

Coenzyme Q_{10} is a ubiquitously distributed essential substance which can transport electorns through mitochondria or cytoplasmic membrane. Recombinant *Escherichia coli* was developed to produce coenzyme Q_{10} by introducing the *ddsA* gene encoding decaprenyl diphosphate synthase from *Gluconobacter suboxydans*. Constitutive expression of the *ddsA* showed higher specific coenzyme Q_{10} content than the inducible *ddsA* expression system. Coexpression of the *dxs* gene from *Pseudomonas aeruginosa* encoding 1-deoxy-D-xylulose-5-phosphate synthase, the first gene of the non-mevalonate pathway for Isopentenyl pyrophosphate synthesis improved the specific coenzyme Q_{10} content by two fold. Fed-batch fermentation of the recombinant *E. coli* produced 46.1 mg Γ^{-1} coenzyme Q_{10} final concentration with productivity of 0.92 mg Γ^{-1} hr⁻¹.