(05-1-112)

Marker-assisted backcrossing for introgression of SMV resistance genes into soybean cultivars

Jung-Kyung Moon^{*}, Young-Sun Kim, Soon-Chun Jeong¹, Hong-Tae Yun, Sung-Taek Kang, and Jang-Yong Lee

National Institute of Crop Science, RDA, Suwon 441-857, Korea

¹Korea Research Institute of Bioscience and Biotechnology, Daejon 305-333, Korea

Objectives

The most effective and reliable method to control *Soybean mosaic virus* (SMV) disease is the utilization of resistant genes, *Rsv1*, *Rsv3* and *Rsv4*. In order to maximize the gene effects to SMV, pyramiding multiple resistance genes into a cultivar is a good method. The objectives of this study were to construct near-isogenic lines containing SMV resistance gene(s) using marker-assisted introgression of resistance genes, *Rsv1*, *Rsv3* and *Rsv4*.

Materials and Methods

- 1. Materials
 - * Donor lines: PI96983 (Rsv1), L29 (Rsv3), V94-5152 (Rsv4)
- * Recurrent lines: Hwangkeumkong, Taekwangkong, Sowonkong
- 2. Methods
- * Breeding, Marker-assisted selection

Results and Discussion

One line for Rsv1, five lines for Rsv3, and seven lines for Rsv4 were successfully developed as near-isogenic lines. Based on co-dominant molecular marker data from BC_1F_1 to BC_4F_1 generation, modified two-step approaches were applied efficiently in the aspect of reducing gene-drag and fast recovery of recurrent parent genome: simultaneous use of foreground and background selection markers on carrier chromosome at BC_1F_1 or BC_2F_1 generation.

Acknowledgement

This study was supported by Biogreen21 Program.

^{*} Corresponding author: Jung-Kyung Moon, TEL: 031-290-6736, E-mail: moonjk@rda.go.kr