(05 - 1 - 46)

Pepper transformation by disease defense related genes

Yun Hee Lee^{1 · 3*}, Min Jung¹, Sun Hee Shin¹, Ju Yeon Kim¹, Yoon Sik Park¹, Soon Ho Choi¹, Dong Bo Shim¹, Nam Han Her¹, Jang Ha Lee¹, Mi Yeon Lee², Ki Hyun Ryu², Kee Yoeup Paek³, and Chee Hark Harn¹

¹Biotechnology Institute, Nong Woo Bio Co., Ltd., Yeoju, Gyeonggi, Korea; ²Dept. of Environmental and Life Science, Seoul Women's Univ., Seoul, Korea; ³Dept. of Horticultural Science, Chungbuk National Univ., Chungbuk, Korea

Objectives

To develop disease resistant peppers against pathogens

Materials and Methods

1. Material: Pepper inbred lines

Agrobacterium strain EHA105, EHA101, LBA4404

2. Methods: Agrobacterium mediated transformation by CIT (Callus induced transformation)

Results and Discussion

Peppers were transformed with several genes related to pathogen resistance. Those genes are CMV-CP, CMV-CP::PepMoV-CP, PPII, CaWRKY114, CaWRKY1244, CaSAR8.2, CaPF1, ICS, GLP, PR10 and PLC1 (RNAi vector). The transformation has been successfully performed with a rate of 0.5-1%. T₁ generation of those transgenic peppers was tested for the resistance. For example, around 600 T₁ peppers transformed with CMVCP-P0 gene were exposed to CMVP1 pathogen and the transgenic peppers resistant to CMVP1 pathogen were selected. Similarly, a numbers of T₁ peppers with CaWRKY114 gene were also selected as resistance to PMMV or bacterial leaf speck.

CMVP1 Resistant Susceptible

The distinct difference between resistant and susceptible to CMVP1 is the height: the susceptible peppers are shorter and grow slower with less seeds.

^{*} Corresponding author: Chee Hark Harn, TEL: 031-883-7055, E-mail: chharn@nongwoobio.co.kr