(05-1-35) ## Transgenic Sweetpotato (*Ipomoea batatas* Lam.) Plants with Enhanced Tolerance to SO₂ Soon Lim¹, Kyoung-Sil Yang¹, Yun-Hee Kim², Suk-Yoon Kwon², Sim-Hee Han³, Jae-Cheon Lee³, Kee-Yoeup Paek⁴, Haeng-Soon Lee¹, Sang-Soo Kwak² ¹Laboratory of Plant Cell Biotechnology and ²Laboratory of Environmental Biotechnology, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea; ³Dept. of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-350, Korea; ⁴Dept. of Horticulture, Chungbuk National University, Cheongju 361-763, Korea ## **Objectives** Sweetpotato (*Ipomoea babata* Lam.) is one of important industrial crops in the 21st century. In previous study, we developed transgenic sweetpotato expressing both CuZn superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts under the control of an oxidative stress-inducible SWPA2 promoter (SSA plants). SSA plants showed enhanced tolerance against methyl viologen-induced oxidative stress and low temperature. In this study, we evaluated the tolerance of SSA plants to an important air pollutant SO₂. ## Materials and Methods - 1. Materials: Transgenic SSA sweetpotato (cv. Yulmi) plants grown in the green house - 2. Methods - SO₂ treatment: 500 ppb SO₂ for 8 h/day for 5 days in a chamber - Analysis: Photosynthetic efficiency (Fv/Fm), chlorophyll contents, RT-PCR ## Results and Discussion When exposed to 500 ppb SO₂ for 5 days in growth chamber, SSA plants showed a strong tolerance compared to non-transgenic (NT) plants showing a severe morphological leaf damage. Photosynthetic efficiency (Fv/Fm) of NT plants reduced to 42% after treatment, whereas SSA plants reduced only to 6.3%. The foreign CuZnSOD and APX genes in SSA plants exposed to SO₂ were detected by RT-PCR using specific primers. The further characterization of SSA plants is under study in terms of multiple stress tolerance.