Effect of Various Buffer Systems and Yeast Extract on Hydrogen Producing Cultures of Caldicellosiruptor saccharolyticus Eun Kyoung Ahn¹, Jong-Hwan Shin¹, Jong Hyun Yoon¹, Sang Jun Sim², Mi-Sun Kim³, Tai Hyun Park^{*} ^{1,*}School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea, ²Department of Chemical Engineering, Sungkyunkwan University, Suwon, Korea, ³Korea Institute of Energy Research, Daejon, Korea. The extremely thermophilic bacterium, *Caldicellosiruptor saccharolyticus*, produces H₂ during the dark fermentation on sucrose¹⁾. The pH of the culture medium sharply decreased due to the accumulation of various organic acids, and this inhibited the H₂ production seriously²⁾. Three buffer systems were examined to relieve the inhibition. The bicarbonate buffer system containing 5% CO₂ in gas phase was the best system for H₂ production. When initial CO₂ concentration was 5% in gas phase, the H₂ production and H₂ yield were estimated to be 1632 ml/l and 2.69 mol H₂/mol sucrose, respectively. Also, the H₂ production of *C. saccharolyticus* was affected by the amount of yeast extract in the medium. When pH was controlled at pH 7.0, the H₂ production and H₂ yield were estimated to be 2177.0 ml/l and 4.3 mol H₂/mol sucrose on concentration of 1 g yeast extract/l, respectively. And the maximum specific H₂ production rate was 29.9 mmol/g DW/h on concentration of 1 g yeast extract/l. These results indicate that *C. saccharolyticus* has a high potential as a H₂ producer. ## References - E.W.J. van Niel et al., Distinctive properties of high hydrogen producing extreme thermophile, Caldicellulosiruptor saccharolyticus and Thermotoga elfii (2002), Int J Hydrogen Energy, 27, 1391-1398. - 2. You-Kwan Oh et al., Fermentative hydrogen production by a new chemoheterotrophic bacterium *Rhodopseudomonas Palustris* P4 (2002), Int J Hydrogen Energy, 27, 1373-1379.