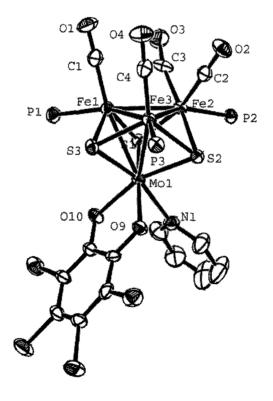

(PL-2)


Structure of MoFe₃S₃ Compounds and Possible Relevance to Nitrogenase FeMo cofactor

한 재 홍

중앙대학교 생명공학과

A new class of Mo/Fe/S clusters with the MoFe₃S₃ core has been synthesized in attempts to model the FeMo-cofactor in nitrogenase. These clusters are obtained in reactions of the $(Cl_4-cat)_2Mo_2Fe_6S_8(PR_3)_6$ [R = Et (I), ⁿPr (II)] clusters with CO. The (Cl₄-cat)MoFe₃S₃(PEt₃)₂(CO)₆ clusters include (III),new (Cl₄-cat)(O)MoFe₃S₃(PEt₃)₃(CO)₅ (IV), $(Cl_4-cat)(O)MoFe_3S_3(P^nPr_3)_3(CO)_5$ (IVa), (Cl₄-cat)(O)MoFe₃S₃(PEt₃)₂(CO)₆ **(V)**, $(Cl_4-cat)(O)MoFe_3S_3(P^nPr_3)_2(CO)_6$ (Va). $(Cl_4-cat)(Pyr)MoFe_3S_3(PEt_3)_2(CO)_6$ (VI), $(Cl_4-cat)(Pyr)MoFe_3S_3(P^nPr_3)_2(CO)_6$ (VIa), $(Cl_4-cat)(PnPr_3)MoFe_3S_3(P^nPr_3)_2(CO)_6$ (VII) and $(Cl_4-cat)(Pyr)MoFe_3S_3(P^nPr_3)_3(CO)_4$ The clusters III - VIII have been structurally and spectroscopically (VIII). characterized. EPR, zero field ⁵⁷Fe-Mossbauer spectroscopic characterizations and magnetic susceptibility measurements have been used for a tentative assignment of the electronic and oxidation states of the MoFe₃S₃ sulfur-voided cuboidal clusters. A structural comparison of the clusters with the MoFe₃S₃ subunit of the FeMo-cofactor has led to the suggestion that the storage of reducing equivalents into M-M bonds, and their use in the reduction of substrates, may occur with the FeMo-cofactor which also appears to have M-M bonding. Based on this argument, a possible N2-binding and reduction mechanism on the FeMoco-cofactor is proposed.

