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AbstractAbstractAbstractAbstract    

Disassembly scheduling is the problem of 

determining the quantity and timing of 

disassembling used products while satisfying 

the demand of their parts or components over 

a planning horizon. The case of single product 

type with assembly structure is considered for 

the objective of minimizing the sum of 

disassembly operation and inventory holding 

costs. In particular, the resource capacity 

constraint is explicitly considered. The 

problem is formulated as an integer 

programming model, and a two-stage heuristic 

with construction and improvement algorithms 

is suggested in this paper. To show the 

performance of the heuristic, computational 

experiments are done on a number of 

randomly generated problems, and the test 

results show that the algorithm can give near 

optimal solutions within a very short amount of 

computation time. 

 

 

1. Introduction1. Introduction1. Introduction1. Introduction    

 

For the last decades, the growth of 

environmental concerns has stimulated the 

industry to develop various material and 

product recovery processes. Disassembly, one 

of the essential recovery processes, is the 

process of separating used and/or end-of-life 

products into their constituent parts, 

subassemblies, or other groupings. Due to its 

importance in material and product recovery, 

previous research has been done in a wide 

range of disassembly problems such as 

disassembly sequencing, design for 

disassembly, disassembly scheduling, etc. For 

literature reviews on the problems, see 

Boothroyed and Alting. [1], Jovane et al. [3], 

O’shea et al. [12], Lee et al. [8], Santochi et al. 
[13], and Lambert [7].  

This paper considers disassembly scheduling, 

which is the problem of determining the 

quantity and timing of disassembling (used or 

end-of-life) products so as to satisfy the 

demand of their parts or components over a 

finite planning horizon. Disassembly scheduling 

is one of the important mid- or short-term 

planning problems in disassembly systems. In 

other words, from its solution, we can 

determine which products, how many, and 

when to disassemble products and/or their 

subassemblies [8].  

Most previous research on disassembly 

scheduling is uncapacitated ones, i.e., resource 

capacity constraints are not considered. Gupta 

and Taleb [2] consider the fundamental case, 

i.e., single product type without parts 

commonality, and suggest a simple algorithm 

without explicit objective function, and Lee and 

Xirouchakis [10] suggest a heuristic for the 

objective of minimizing the costs related with 

disassembly process. For the extended models 
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with parts commonality, see Kim et al [4], 

Taleb and Gupta [14], and Taleb et al [15]. 

Recently, Lee et al [9] present integer 

programming models for all uncapacitated 

cases together with their performances using a 

commercial software package. Several 

research articles consider the capacitated 

problems. Lee et al [11] consider the 

fundamental case, and suggest an integer 

programming model. Although the model can 

give optimal solutions, its application is limited 

only to the small sized problems due to its 

excessive computation time, and Kim et al [6] 

suggest an algorithm that minimizes the 

number of products disassembled 

This paper considers the case of single 

product type without parts commonality while 

the resource capacity is explicitly considered. 

The objective is to minimize the sum of 

disassembly operation and inventory holding 

costs, and hence this paper extends the model 

of Kim et al [6] that minimizes the number of 

product disassembled. In other words, the 

cost-based objective considered in this paper 

is more general than that of Kim et al [6]. The 

problem is formulated as an integer 

programming model, and a two-stage heuristic 

with construction and improvement algorithms 

is suggested. Finally, computational 

experiments are done on a number of 

randomly generated problems, and the test 

results are reported.  
 

 

2. Problem Description2. Problem Description2. Problem Description2. Problem Description    

 

Prior to presenting the problem, we first 

explain the disassembly product structure. In 

the structure, the root item represents the 

product itself to be disassembled and each leaf 

item is the part or component not to be 

disassembled further. A child item represents 

any item that has a parent item which has at 

least two child items. Notice that a child item 

has only one parent item in the problem 

considered in this paper, i.e., the case of single 

product type without parts commonality.  

Figure 1 shows an example of disassembly 

product structure, obtained from Gupta and 

Taleb [2]. Item 1 is the root item, and items 6 

to 12 are leaf items. The number in 

parenthesis represents the yield of the item 

when its parent is disassembled, e.g., 

disassembly of one unit of item 5 results in 

three units of item 10, two units of item 11, 

and three units of item 12. Here, item 5 is 

called parent item, while items 10, 11 and 12 

are called child items. Also, disassembly lead 

time (DLT) is the time required to disassemble 

a certain parent item.  

 

 

 

 

 

 

 

 

Figure 1.Figure 1.Figure 1.Figure 1. Disassembly structure: an example 

 

The capacitated disassembly scheduling 

problem considered in this paper can be 

described as follows: for a given disassembly 
structure, the problem is to determine the 
quantity and timing of disassembling each 
parent item (including the root item) to meet 
the demands of leaf items over a planning 
horizon while satisfying the capacity 
restriction in each period of the planning 
horizon. The capacity restriction in each 

period is considered as available time at that 

period, and each disassembly operation 

consumes a portion of the available time. The 

objective is to minimize the sum of 

disassembly operation and inventory holding 

costs. Here, the disassembly operation cost is 

proportional to the required labor or machine 

processing time. It is assumed that cost values 

are the same over the planning horizon. Also, 

the inventory holding cost occurs when items 

are stored to satisfy future demand, and they 

are computed based on the end-of-period 

inventory.  

The disassembly product structure is 

assumed to be given by the corresponding 

disassembly process plan that specifies all 

disassembly operations and their processing 

times. Additional assumptions made in this 

problem are summarized as follows: (a) there 

is no shortage of the root items, that is, 

products can be delivered whenever they are 

needed; (b) the demand of leaf items is given 

in advance and deterministic; (c) backlogging 
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is not permitted and hence demands are 

satisfied on time; (d) parts and/or components 

resulting from the disassembly are perfect in 

quality, i.e., no defectives are considered; (e) 

each disassembly operation is done in only one 

period and cannot be done over two or more 

periods; and (f) disassembly lead time is 

constant and known in advance. 

The problem can be formulated as an integer 

programming model. In the formulation, all 

items are numbered with integer 1,2, … il, … I. 
Here, il denotes the index for the first leaf item, 

and therefore the indices that are larger than 

or equal to il represent leaf items. The 

notations used in this paper are summarized 

below. 

 

Parameters 

gi  disassembly processing time of parent 

item i 

Ct  available capacity in period t 

Dit demand requirement of leaf item i in 

period t 

aij  number of item j obtained by 

disassembling one unit of item i (i < j) 

sit  external scheduled receipt of item i in 

period t 

φ(i) parent of item i 

li  disassembly lead time (DLT) of item i 

Ii0  initial inventory of item i 

pi  disassembly operation cost of item i  

hi  inventory holding cost of item i 
 

Decision variables 

Xit  amount of item i disassembled in period t 

Iit  inventory level of item i at the end of 

period t 
 

Now, the integer program is given below. 

[[[[P]P]P]P]    Minimize 
1

1 1 2 1

li T I T

i it i it

i t i t

p X h I
−

= = = =

⋅ + ⋅∑∑ ∑∑  

subject to 

( ), 1 ( ), ( ), iit i t it i i i t l itI I s a X X− −= + + ⋅ −
ϕϕ ϕ  

for i = 2, 3, … il −1 and t = 1, 2, … 

T (1) 

( ), 1 ( ), ( ), iit i t it i i i t l itI I s a X D− −= + + ⋅ −
ϕϕ ϕ  

for i = il , il +1… I and t = 1, 2, … 

T (2) 

1

1

li

i it t

i

g X C
−

=

⋅ ≤∑  for t = 1, 2, … T(3) 

Xit ≥ 0 and integers  

for i = 1, 2, … il − 1 and t = 1, 2, … 

T (4) 

Iit ≥ 0 and integers 

for i = 2, 3, … I and t = 1, 2, … T
 (5) 

The objective function denotes the sum of 

disassembly operation and inventory holding 

costs. Constraint (1) represents the inventory 

balance of each parent item. That is, at the end 

of each period, the inventory level of the 

parent item is what we had before the period, 

increased by the external scheduled receipt 

and the quantity obtained by disassembling its 

corresponding parent item, and decreased by 

the quantity of the item disassembled in that 

period. Here, the inventory balance constraint 

of the root item is not included because it is 

unnecessary to have surplus inventories of the 

root item. Also, the inventory balance of each 

leaf item is represented by constraint (2), 

which is different from (1) in that the demand 

requirement is used instead of the amount of 

items disassembled. Also, constraint (3) 

represents the capacity constraint in each 

period. That is, the sum of processing times of 

disassembly operations assigned to each 

period should be less than or equal to the 

given capacity of that period. Finally, the 

constraints (4) and (5) represent the conditions 

of the decision variables. Particularly, 

constraint (5) guarantees that backlogging is 

not permitted. 

 

 

3. Solution Algorithm3. Solution Algorithm3. Solution Algorithm3. Solution Algorithm 

 

This section presents a two-stage algorithm, 

in which an initial solution is constructed using 

a modification of an existing algorithm and 

then it is improved considering cost changes 

and capacity constraints. The details of each 

stage are explained below. 

 

Stage 1: Obtaining an initial solution 

 

To obtain the initial solution in this stage, we 

modify the algorithm of Gupta and Taleb [2], 

to be called the GT algorithm hereafter, so 

that the capacity constraints are satisfied. 

Note that the GT algorithm gives the minimal 
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latest disassembly schedule. That is, the 

schedule satisfies the demand of leaf items as 

latest as possible with the minimum amount of 

disassembly operations. (See Lee and 

Xirouchakis [10] for more details on its proof 

and the basic of the GT algorithm will be 

explained in Procedure 1 (Step 2).) Therefore, 

if the solution obtained from the GT algorithm 

satisfies the capacity constraints, it minimizes 

the sum of disassembly operation and 

inventory holding costs, and hence optimal 

solutions can be obtained. Otherwise, the 

solution should be modified while increasing 

the inventory holding costs. Note that although 

the solution is modified, disassembly operation 

costs are not increased because we design the 

modification method in which the total amount 

of disassembly is not changed. 

The basic idea of the solution modification is 

as follows: First, the minimal latest 

disassembly schedule of a parent item is 

determined using the same method as in the 

GT algorithm. Then, if the disassembly 

schedule obtained does not satisfy the capacity 

restriction in a period, the overloaded 

disassembly quantity in that period is moved to 

one earlier period. This is done recursively 

from parent item il − 1 to root item.  

Now, the procedure of the first stage is 

summarized below. In the procedure, H(i) 
denotes the set of child items of parent i, Si 

denotes the sum of disassembly lead times of 

items on a path from the root item to item i, 
e.g., S5 = l1 + l2 + 1 = 3 in the disassembly 

structure in Figure 1, and Rt denotes the 

remaining capacity at period t.  
    

Procedure 1Procedure 1Procedure 1Procedure 1. (Construction of initial solution) 

Step 1. Set i = il − 1, i.e., the parent item with 

the largest index, and Rt = Ct for all t.  

Step 2. For parent i and its child items, do the 

following steps: 

(a) Set t = 1. 

(b) For each child item j ∈ H(i), calculate 

the Net Requirement(NRjt) in period t 
as 

, 1max{0, }jt jt j t jtNR Q I s−= − −  

where Qjt = Djt if j = il, il + 1, … I and 

Qjt = Xjt  

(c) Calculate the disassembly quantity of 

parent i in period t − li using 

,
( )

max{ }
i

jt

i t l
j H i

ij

NR
X

a
−

∈

 
=  

  
 

where • is the smallest integer that 

is greater than or equal to •. 
(d) Set t = t + 1. If t > T, go to Step 3. 

Otherwise, go to (b). 

Step 3. Set t = T, and for item i, do the 

following steps: 

(a) If Rt ≥ gi∙Xit , go to (b). If t − 1< Si, 

then stop. Otherwise, calculate the 

overloaded quantity (E) as 

 ititi gRXgE /)( −⋅=  and modify the 

solution as  

it itX X E= − and , 1 , 1i t i tX X E− −= + . 

Also, update remaining capacity (Rt) 

using 

Rt = Rt − gi∙E. 

(b) For all child items j ∈ H(i), calculate 

the inventory level in period t using  

Ijt = max {0, Ij,t-1 + sjt + aij∙Xi,t-li − 
NRjt} 

(c) Set t = t – 1. If t = 0, go to Step 4. 

Otherwise, go to (a). 

Step 4. Set i = i − 1, If i = 0, stop. Otherwise, 

go to Step 2. 
 

Notice that the total amount of disassembly 

is equal to the one obtained by the GT 

algorithm, and hence the disassembly 

operation cost is minimized. 

 

Stage 2: Improvement 
 

In this stage, the initial solution is improved 

without violating the capacity and inventory 

balance constraints. The improvement method 

suggested in this paper is based on the 

pairwise move between disassembly quantities 

assigned to two different periods, while 

checking the changes of objective value. The 

pairwise move consists of forward and 

backward moves. The forward move is done 

from one later period to one earlier period, 

while the backward move is reversed. Note 

that the forward and backward moves are done 

at the same time.  

Before explaining the pairwise move, we 

make the following assumption: 

( )

i k ik

k H i

h h a
∈

≤ ⋅∑    for  i = 2, 3, … il−1 
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This assumption is not very restrictive since 

the inventory holding cost is directly related to 

the item value. That is, the item value may 

increase as the disassembly operations 

process. 

First, we define the forward and backward 

moves. 

Forward move 

Suppose that n disassembly operations of 

parent item i in period t are moved period t + 

1. Then, the new schedule of item i in periods 

t and t + 1 becomes  

it itX X n′ = −  and , 1 , 1i t i tX X n+ +′ = + , 

and the new inventory levels of item i and its 

child items are changed as  

it itI I n′ = +  and  

, ,i ik t l k t l ikI I n a+ +′ = − ⋅  for k ∈ H(i). 

From these, the movable disassembly quantity 

n from period t to t + 1 is selected in the 

range defined as  

,

( )
0 min{ min , }ik t l

it
k H i

ik

I
n X

a

+

∈

 
≤ ≤  

 
, (6) 

which results from the nonnegativity 

constraints Xit ≥ 0 and Iit ≥ 0. The forward 

move can decrease the inventory holding cost, 

which can be calculated as  

( )

( )n
i ik k i

k H i

F n a h h
∈

= ⋅ ⋅ −∑ . (7) 

Backward move 

Suppose that m disassembly operations of 

item j are moved from period t + 1 to t. Then, 

the new schedule of item i in periods t and t + 

1 becomes 

jt jtX X m′ = + and, , 1 , 1j t j tX X m+ +′ = −  

and the new inventory levels of item i and its 

child items are changed as  

jt jtI I m′ = −  and  

, ,j jk t l k t l jkI I m a+ +′ = + ⋅  for k ∈ H(j). 

From the nonnegativity constraints of the 

disassembly quantity and the inventory level, 

the movable disassembly quantity from period 

t + 1 to t is selected in the range defined as  

, 10 min{ , }i t jtm X I+≤ ≤ .

 (8

) 

Unlike the forward move, the backward move 

increases the inventory holding cost, which 

can be calculated as  

( )

( )m
j j jk k

k H j

B m h a h
∈

= ⋅ − ⋅∑  

 (9

) 

As stated earlier, the improvement in the 

second stage is done by the pairwise move, 

i.e., forward and backward moves at the same 

time. That is, an improved solution can be 

obtained if the cost decrease of the forward 

move is greater than the cost increase of the 

backward move while the capacity and 

inventory balance constraints are satisfied. 

The improvement method requires the 

methods to check the feasibility on the 

capacity constraints and to determine the 

amount of moves. 

Suppose that n disassembly operations of 

parent item i are moved from period t to t + 1, 

i.e., forward move, and m disassembly 

operations of item j are moved from period t + 

1 to t at the same time, i.e., backward move. 

Then, this pairwise move results in the 

remaining capacities   

t t i jR R n g m g′ = + ⋅ − ⋅ , and (10) 

1 1t t i jR R n g m g+ +′ = − ⋅ + ⋅  (11) 

where 
1

1
.li

t t i iti
R C g X

−
== − ⋅∑ From this, we can 

see that the pairwise move is feasible if both 

remaining capacities are nonnegative.  

Now, we explain the method to determine 

the amount of moves. In the move, we 

determine the best (n*, m*) using  

( , )

( *, *) argmax{ }n m
i j

n m

n m F B= + . 

In the method, we set initially the forward 

move amount n as  

,

( )
min{ min , }ik t l

it
k H i

ik

I
n X

a

+

∈

 
=  

 
, 

which is the maximum value in the range (6). 

Then, the amount n of forward move is 

decreased one by one until n = 0, which is the 

minimum value in the range (6). Here, given 

amount n, the backward move amount m is 

determined as  

1( )
max{ ,0}i t

j

n g R
m

g

+
 ⋅ −

=  
  

 

since the backward move amount m should 

have the minimum value in the range (8) since 
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the backward move results in the increase of 

costs as in (7) and also remaining capacities 

after the move should not be nonnegative, 

which are defined in (10) and (11). 

The procedure of the second stage is 

summarized below. 

 

Procedure 2.Procedure 2.Procedure 2.Procedure 2. (Improvement) 

Step 1. Set i = 1 

Step 2. For parent i, do the following 

steps: 

(a) Set t = 1 and  j = i + 1 

(b) Find the best backward and forward 

moves (n*, m*) using the method 

explained earlier. If the best move 

results in cost reduction, update the 

solution by performing the pairwise 

move.  

(c) Set j = j + 1. If j > il – 1, set t = t + 1. 

If t > T , go to Step 3 and otherwise, 

go to (b).  

Step 3. Set i = i + 1, if i > il – 1, stop. 

Otherwise, go to Step 2. 
    

4. Computational Experiments4. Computational Experiments4. Computational Experiments4. Computational Experiments    

 

To show the performance of the two-stage 

heuristic suggested in this paper, 

computational experiments were done on a 

number of randomly generated test problems. 

Also, the two-stage heuristic is compared with 

the algorithm of Kim et al. [6] (without and 

with the improvement method) although it is 

developed to minimize the number of products 

disassembled. Two performance measures 

were used in this test: percentage deviation 

from the optimal solution value and CPU 

seconds. Here, optimal solution values were 

obtained by solving problem [P] directly using 

CPLEX 9.0. The algorithm and the program to 

generate integer programs were coded in C 

and tests were done on a personal computer 

with a Pentium processor operating at 2.0 GHz 

clock speed. 

For the test, 25 problems were generated for 

each combination of two levels of capacity 

tightness (loose and tight), five levels of the 

number of items (10, 20, 30, 40 and 50) and 

three levels of the number of periods (10, 

20and 30). For each level of the number of 

items, 5 disassembly products structures (and 

hence totally 15) were randomly generated. In 

the disassembly structures, the number of 

child items for each parent and its yield was 

generated from DU(2,5) and DU(1,3) 

respectively. Here, DU(a, b) is the discrete 

uniform distribution with range [a, b]. 

Disassembly lead time was set to 0, 1, and 2 

with probabilities, 0.2, 0.7, and 0.1, 

respectively. External scheduled receipt and 

initial inventory levels were set to 0 without 

loss of generality.  

For each disassembly structure, 5 problems 

with different data were generated for each 

level of the number of periods. Disassembly 

operation costs were generated from 

DU(50,100), inventory holding costs were 

generated from DU(5,10). Capacity per period 

was set to 400, 480, and 540 with probabilities, 

0.2, 0.5, and 0.3, respectively. Disassembly 

time was generated from DU(1,4). The demand 

is generated using the following procedure: 

(1) Demand is initially generated from 0 or 

DU(50,200) with probabilities 0.1 and 0.9, 

respectively; 

(2) With the demand, the problem is solved 

using the GT algorithm 

(3) The overall capacity usage(CU) of its 

solution is calculated using  
1

1 1

li t T

i iti t
CU g X

− =

= =
= ⋅∑ ∑ , 

where Xit is the solution of the GT 

algorithm. 

(4) Demand is regenerated using 

/it itd TC CU dα ′= ⋅ ⋅   , 

where α is a parameter that represents 

capacity tightness (α is set to 0.7 and 0.9 

for the cases of loose and tight capacity 

tightness), TC is the sum of capacities 

over the planning horizon and dit′ is the 

demand generated initially in (1). 

The test results are summarized in Table 

1(a) and (b) that shows the average 

percentage deviations from the optimal 

solution values and average CPU seconds. It 

can be seen from the tables that the two-stage 

heuristic gives very near optimal solutions: 

within 0.7% in overall average for the case of 

tight capacity and 0.1% for the case of loose 

capacity. Also, significant improvements can 

be obtained in the second stage, which shows 

the effectiveness of the improvement 

procedure. However, the two-stage heuristic 

could not give feasible solutions for a few 

problems in the case of tight capacity. In this 
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case, the algorithm of Kim et al [6] with the 

improvement stage can be used although its 

performance is not better than the two-stage 

heuristic. Finally, the CPU seconds of the two-

stage heuristic were much smaller than CPLEX. 

In fact, in the case of tight capacity, CPLEX 

requires long CPU seconds and they are not 

consistent. Therefore, we can argue that the 

two-stage heuristic can be used to solve the 

practical sized problems.    

    

Table 1. Table 1. Table 1. Table 1. Test results for the suggested 

algorithm    

(a) Case of tight capacity 

Percentage 

deviations 
CPU seconds Numbe

r of  

items 

Numbe

r of  

periods Two-

stage 
Kim et al.1 

Two-

stage 

CPLE

X 

10 10 4.5 (1.3)
2
 7.7 (6.8)

3
 0.000

*
 0.8 

10 20 2.7 (0.6) 13.9 (13.2) 0.000 164.0 

10 30 3.5 (0.6) 14.6 (14.0) 0.000 4.3 

20 10 2.0 (0.3) 12.5 (09.7) 0.000 6.7 

20 20 3.1 (0.9) 17.8 (15.0) 0.000 226.9 

20 30 2.2 (0.5) 22.4 (19.5) 0.000 532.8 

30 10 3.7 (0.6) 10.2 (6.6) 0.000 0.4 

30 20 2.7 (0.7) 14.9 (11.7) 0.000 21.6 

30 30 2.0 (0.3) 17.2 (15.0) 0.000 0.7 

40 10 2.6 (0.7) 8.4 ( 5.3) 0.001 3.5 

40 20 3.4 (0.8) 16.9 (13.1) 0.001 436.1 

40 30 1.7 (0.5) 20.6 (16.9) 0.000 443.1 

50 10 3.6 (1.3) 8.5 (5.0) 0.002 0.2 

50 20 3.3 (0.8) 18.0 (13.2) 0.000 20.5 

50 30 1.8 (0.2) 24.2 (19.9) 0.001 2.9 
1
 The algorithm of Kim et al [6] 

2,3
 average percentage deviation out of 25 problems 

without and with (in parenthesis) the improvement 

stage procedure  
*
 Average CPU seconds is less than 0.0005s 

(b) Case of loose capacity 

Percentage 

deviations 
CPU seconds Numbe

r of  

items 

Numbe

r of  

periods Two-

stage 
Kim et al. 

Two-

stage 

CPLE

X 

10 10 0.8 (0.1) 26.0 (24.3) 0.000 0.02 

10 20 0.6 (0.1) 43.5 (42.6) 0.000 0.03 

10 30 0.1 (0.06) 40.9 (40.5) 0.000 0.04 

20 10 1.1 (0.4) 39.9 (35.3) 0.000 0.04 

20 20 
0.13 

(0.11) 
55.1 (51.8) 0.000 0.04 

20 30 
0.13 

(0.01) 
59.7 (57.1) 0.000 0.10 

30 10 0.4 (0.1) 33.2 (29.5) 0.000 0.03 

30 20 0.2 (0.05) 49.0 (44.7) 0.000 0.06 

30 30 0.1 (0.01) 54.5 (51.0) 0.001 0.11 

40 10 1.0 (0.2) 30.8 (23.2) 0.000 6.96 

40 20 0.1 (0.02) 46.1 (40.1) 0.001 0.11 

40 30 0.1 (0.01) 54.2 (49.0) 0.000 37.73 

50 10 1.4 (0.3) 28.4 (22.3) 0.000 0.11 

50 20 0.2 (0.03) 47.7 (40.8) 0.001 0.12 

50 30 
0.03 

(0.01) 
58.0 (52.5) 0.001 0.21 

 

    
5. Concluding Remarks5. Concluding Remarks5. Concluding Remarks5. Concluding Remarks    

 
This paper considered the capacitated 

disassembly scheduling problem with single 

product type without parts commonality for the 

objective of minimizing the sum of disassembly 

operation and inventory holding costs. To 

solve the problem, a two-stage heuristic, 

which consists of construction and 

improvement algorithms, was suggested. 

Computational experiments on a number of 

randomly generated test problems show that 

the two-stage heuristic can give optimal or 

very near optimal solutions within very short 

amount of computation time. 

This research can be extended in several 

ways. First, it is needed to consider more 

general cases such as multiple product types 

with part commonality. Here, the part 

commonality introduces one or more 

procurement sources for each common part 

and hence makes the problem difficult to solve. 

Second, like other disassembly problems, 

uncertainties such as stochastic demand, 

defective parts/components, and stochastic 

disassembly operation times are important 

further considerations. 
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