
2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 715 -

자원제약을자원제약을자원제약을자원제약을 고려한고려한고려한고려한 분해분해분해분해 일정계획일정계획일정계획일정계획 문제에문제에문제에문제에 대한대한대한대한 2 2 2 2 단계단계단계단계 발견적발견적발견적발견적 기법기법기법기법

A TwoA TwoA TwoA Two----Stage Heuristic for Capacitated DiStage Heuristic for Capacitated DiStage Heuristic for Capacitated DiStage Heuristic for Capacitated Dissssassembly Schedulingassembly Schedulingassembly Schedulingassembly Scheduling

HyongHyongHyongHyong----Bae JeonBae JeonBae JeonBae Jeon1, Jun Jun Jun Jun----Gyu KimGyu KimGyu KimGyu Kim1, Hwa Hwa Hwa Hwa----Joong KimJoong KimJoong KimJoong Kim2, and DongDongDongDong----Ho LeeHo LeeHo LeeHo Lee1

1Department of Industrial Engineering

Hanyang University

Sungdong-gu, Seoul 133-791

KOREA

2Institute of Production and Robotics (STI-IPR-LICP)

Swiss Federal Institute of Technology (EPFL)

Lausanne, CH-1015

SWITZERLAND

AbstractAbstractAbstractAbstract

Disassembly scheduling is the problem of

determining the quantity and timing of

disassembling used products while satisfying

the demand of their parts or components over

a planning horizon. The case of single product

type with assembly structure is considered for

the objective of minimizing the sum of

disassembly operation and inventory holding

costs. In particular, the resource capacity

constraint is explicitly considered. The

problem is formulated as an integer

programming model, and a two-stage heuristic

with construction and improvement algorithms

is suggested in this paper. To show the

performance of the heuristic, computational

experiments are done on a number of

randomly generated problems, and the test

results show that the algorithm can give near

optimal solutions within a very short amount of

computation time.

1. Introduction1. Introduction1. Introduction1. Introduction

For the last decades, the growth of

environmental concerns has stimulated the

industry to develop various material and

product recovery processes. Disassembly, one

of the essential recovery processes, is the

process of separating used and/or end-of-life

products into their constituent parts,

subassemblies, or other groupings. Due to its

importance in material and product recovery,

previous research has been done in a wide

range of disassembly problems such as

disassembly sequencing, design for

disassembly, disassembly scheduling, etc. For

literature reviews on the problems, see

Boothroyed and Alting. [1], Jovane et al. [3],

O’shea et al. [12], Lee et al. [8], Santochi et al.
[13], and Lambert [7].

This paper considers disassembly scheduling,

which is the problem of determining the

quantity and timing of disassembling (used or

end-of-life) products so as to satisfy the

demand of their parts or components over a

finite planning horizon. Disassembly scheduling

is one of the important mid- or short-term

planning problems in disassembly systems. In

other words, from its solution, we can

determine which products, how many, and

when to disassemble products and/or their

subassemblies [8].

Most previous research on disassembly

scheduling is uncapacitated ones, i.e., resource

capacity constraints are not considered. Gupta

and Taleb [2] consider the fundamental case,

i.e., single product type without parts

commonality, and suggest a simple algorithm

without explicit objective function, and Lee and

Xirouchakis [10] suggest a heuristic for the

objective of minimizing the costs related with

disassembly process. For the extended models

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 716 -

with parts commonality, see Kim et al [4],

Taleb and Gupta [14], and Taleb et al [15].

Recently, Lee et al [9] present integer

programming models for all uncapacitated

cases together with their performances using a

commercial software package. Several

research articles consider the capacitated

problems. Lee et al [11] consider the

fundamental case, and suggest an integer

programming model. Although the model can

give optimal solutions, its application is limited

only to the small sized problems due to its

excessive computation time, and Kim et al [6]

suggest an algorithm that minimizes the

number of products disassembled

This paper considers the case of single

product type without parts commonality while

the resource capacity is explicitly considered.

The objective is to minimize the sum of

disassembly operation and inventory holding

costs, and hence this paper extends the model

of Kim et al [6] that minimizes the number of

product disassembled. In other words, the

cost-based objective considered in this paper

is more general than that of Kim et al [6]. The

problem is formulated as an integer

programming model, and a two-stage heuristic

with construction and improvement algorithms

is suggested. Finally, computational

experiments are done on a number of

randomly generated problems, and the test

results are reported.

2. Problem Description2. Problem Description2. Problem Description2. Problem Description

Prior to presenting the problem, we first

explain the disassembly product structure. In

the structure, the root item represents the

product itself to be disassembled and each leaf

item is the part or component not to be

disassembled further. A child item represents

any item that has a parent item which has at

least two child items. Notice that a child item

has only one parent item in the problem

considered in this paper, i.e., the case of single

product type without parts commonality.

Figure 1 shows an example of disassembly

product structure, obtained from Gupta and

Taleb [2]. Item 1 is the root item, and items 6

to 12 are leaf items. The number in

parenthesis represents the yield of the item

when its parent is disassembled, e.g.,

disassembly of one unit of item 5 results in

three units of item 10, two units of item 11,

and three units of item 12. Here, item 5 is

called parent item, while items 10, 11 and 12

are called child items. Also, disassembly lead

time (DLT) is the time required to disassemble

a certain parent item.

Figure 1.Figure 1.Figure 1.Figure 1. Disassembly structure: an example

The capacitated disassembly scheduling

problem considered in this paper can be

described as follows: for a given disassembly
structure, the problem is to determine the
quantity and timing of disassembling each
parent item (including the root item) to meet
the demands of leaf items over a planning
horizon while satisfying the capacity
restriction in each period of the planning
horizon. The capacity restriction in each

period is considered as available time at that

period, and each disassembly operation

consumes a portion of the available time. The

objective is to minimize the sum of

disassembly operation and inventory holding

costs. Here, the disassembly operation cost is

proportional to the required labor or machine

processing time. It is assumed that cost values

are the same over the planning horizon. Also,

the inventory holding cost occurs when items

are stored to satisfy future demand, and they

are computed based on the end-of-period

inventory.

The disassembly product structure is

assumed to be given by the corresponding

disassembly process plan that specifies all

disassembly operations and their processing

times. Additional assumptions made in this

problem are summarized as follows: (a) there

is no shortage of the root items, that is,

products can be delivered whenever they are

needed; (b) the demand of leaf items is given

in advance and deterministic; (c) backlogging

1

2

5

10 11

4

9 8 7 12 6

3 DLT = 0

DLT = 1

DLT = 1

(2)

DLT = 2 DLT = 1

(2)

(4)

(2)

(4)

(1) (3) (3)

(1)

(3) (2)

disassembly

lead time

yield from its parent

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 717 -

is not permitted and hence demands are

satisfied on time; (d) parts and/or components

resulting from the disassembly are perfect in

quality, i.e., no defectives are considered; (e)

each disassembly operation is done in only one

period and cannot be done over two or more

periods; and (f) disassembly lead time is

constant and known in advance.

The problem can be formulated as an integer

programming model. In the formulation, all

items are numbered with integer 1,2, … il, … I.
Here, il denotes the index for the first leaf item,

and therefore the indices that are larger than

or equal to il represent leaf items. The

notations used in this paper are summarized

below.

Parameters

gi disassembly processing time of parent

item i

Ct available capacity in period t

Dit demand requirement of leaf item i in

period t

aij number of item j obtained by

disassembling one unit of item i (i < j)

sit external scheduled receipt of item i in

period t

φ(i) parent of item i

li disassembly lead time (DLT) of item i

Ii0 initial inventory of item i

pi disassembly operation cost of item i

hi inventory holding cost of item i

Decision variables

Xit amount of item i disassembled in period t

Iit inventory level of item i at the end of

period t

Now, the integer program is given below.

[[[[P]P]P]P] Minimize
1

1 1 2 1

li T I T

i it i it

i t i t

p X h I
−

= = = =

⋅ + ⋅∑∑ ∑∑

subject to

(), 1 (), (), iit i t it i i i t l itI I s a X X− −= + + ⋅ −
ϕϕ ϕ

for i = 2, 3, … il −1 and t = 1, 2, …

T (1)

(), 1 (), (), iit i t it i i i t l itI I s a X D− −= + + ⋅ −
ϕϕ ϕ

for i = il , il +1… I and t = 1, 2, …

T (2)

1

1

li

i it t

i

g X C
−

=

⋅ ≤∑ for t = 1, 2, … T(3)

Xit ≥ 0 and integers

for i = 1, 2, … il − 1 and t = 1, 2, …

T (4)

Iit ≥ 0 and integers

for i = 2, 3, … I and t = 1, 2, … T
 (5)

The objective function denotes the sum of

disassembly operation and inventory holding

costs. Constraint (1) represents the inventory

balance of each parent item. That is, at the end

of each period, the inventory level of the

parent item is what we had before the period,

increased by the external scheduled receipt

and the quantity obtained by disassembling its

corresponding parent item, and decreased by

the quantity of the item disassembled in that

period. Here, the inventory balance constraint

of the root item is not included because it is

unnecessary to have surplus inventories of the

root item. Also, the inventory balance of each

leaf item is represented by constraint (2),

which is different from (1) in that the demand

requirement is used instead of the amount of

items disassembled. Also, constraint (3)

represents the capacity constraint in each

period. That is, the sum of processing times of

disassembly operations assigned to each

period should be less than or equal to the

given capacity of that period. Finally, the

constraints (4) and (5) represent the conditions

of the decision variables. Particularly,

constraint (5) guarantees that backlogging is

not permitted.

3. Solution Algorithm3. Solution Algorithm3. Solution Algorithm3. Solution Algorithm

This section presents a two-stage algorithm,

in which an initial solution is constructed using

a modification of an existing algorithm and

then it is improved considering cost changes

and capacity constraints. The details of each

stage are explained below.

Stage 1: Obtaining an initial solution

To obtain the initial solution in this stage, we

modify the algorithm of Gupta and Taleb [2],

to be called the GT algorithm hereafter, so

that the capacity constraints are satisfied.

Note that the GT algorithm gives the minimal

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 718 -

latest disassembly schedule. That is, the

schedule satisfies the demand of leaf items as

latest as possible with the minimum amount of

disassembly operations. (See Lee and

Xirouchakis [10] for more details on its proof

and the basic of the GT algorithm will be

explained in Procedure 1 (Step 2).) Therefore,

if the solution obtained from the GT algorithm

satisfies the capacity constraints, it minimizes

the sum of disassembly operation and

inventory holding costs, and hence optimal

solutions can be obtained. Otherwise, the

solution should be modified while increasing

the inventory holding costs. Note that although

the solution is modified, disassembly operation

costs are not increased because we design the

modification method in which the total amount

of disassembly is not changed.

The basic idea of the solution modification is

as follows: First, the minimal latest

disassembly schedule of a parent item is

determined using the same method as in the

GT algorithm. Then, if the disassembly

schedule obtained does not satisfy the capacity

restriction in a period, the overloaded

disassembly quantity in that period is moved to

one earlier period. This is done recursively

from parent item il − 1 to root item.

Now, the procedure of the first stage is

summarized below. In the procedure, H(i)
denotes the set of child items of parent i, Si

denotes the sum of disassembly lead times of

items on a path from the root item to item i,
e.g., S5 = l1 + l2 + 1 = 3 in the disassembly

structure in Figure 1, and Rt denotes the

remaining capacity at period t.

Procedure 1Procedure 1Procedure 1Procedure 1. (Construction of initial solution)

Step 1. Set i = il − 1, i.e., the parent item with

the largest index, and Rt = Ct for all t.

Step 2. For parent i and its child items, do the

following steps:

(a) Set t = 1.

(b) For each child item j ∈ H(i), calculate

the Net Requirement(NRjt) in period t
as

, 1max{0, }jt jt j t jtNR Q I s−= − −

where Qjt = Djt if j = il, il + 1, … I and

Qjt = Xjt

(c) Calculate the disassembly quantity of

parent i in period t − li using

,
()

max{ }
i

jt

i t l
j H i

ij

NR
X

a
−

∈

 
=  

  

where • is the smallest integer that

is greater than or equal to •.
(d) Set t = t + 1. If t > T, go to Step 3.

Otherwise, go to (b).

Step 3. Set t = T, and for item i, do the

following steps:

(a) If Rt ≥ gi∙Xit , go to (b). If t − 1< Si,

then stop. Otherwise, calculate the

overloaded quantity (E) as

 ititi gRXgE /)(−⋅= and modify the

solution as

it itX X E= − and , 1 , 1i t i tX X E− −= + .

Also, update remaining capacity (Rt)

using

Rt = Rt − gi∙E.

(b) For all child items j ∈ H(i), calculate

the inventory level in period t using

Ijt = max {0, Ij,t-1 + sjt + aij∙Xi,t-li −
NRjt}

(c) Set t = t – 1. If t = 0, go to Step 4.

Otherwise, go to (a).

Step 4. Set i = i − 1, If i = 0, stop. Otherwise,

go to Step 2.

Notice that the total amount of disassembly

is equal to the one obtained by the GT

algorithm, and hence the disassembly

operation cost is minimized.

Stage 2: Improvement

In this stage, the initial solution is improved

without violating the capacity and inventory

balance constraints. The improvement method

suggested in this paper is based on the

pairwise move between disassembly quantities

assigned to two different periods, while

checking the changes of objective value. The

pairwise move consists of forward and

backward moves. The forward move is done

from one later period to one earlier period,

while the backward move is reversed. Note

that the forward and backward moves are done

at the same time.

Before explaining the pairwise move, we

make the following assumption:

()

i k ik

k H i

h h a
∈

≤ ⋅∑ for i = 2, 3, … il−1

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 719 -

This assumption is not very restrictive since

the inventory holding cost is directly related to

the item value. That is, the item value may

increase as the disassembly operations

process.

First, we define the forward and backward

moves.

Forward move

Suppose that n disassembly operations of

parent item i in period t are moved period t +

1. Then, the new schedule of item i in periods

t and t + 1 becomes

it itX X n′ = − and , 1 , 1i t i tX X n+ +′ = + ,

and the new inventory levels of item i and its

child items are changed as

it itI I n′ = + and

, ,i ik t l k t l ikI I n a+ +′ = − ⋅ for k ∈ H(i).

From these, the movable disassembly quantity

n from period t to t + 1 is selected in the

range defined as

,

()
0 min{ min , }ik t l

it
k H i

ik

I
n X

a

+

∈

 
≤ ≤  

 
, (6)

which results from the nonnegativity

constraints Xit ≥ 0 and Iit ≥ 0. The forward

move can decrease the inventory holding cost,

which can be calculated as

()

()n
i ik k i

k H i

F n a h h
∈

= ⋅ ⋅ −∑ . (7)

Backward move

Suppose that m disassembly operations of

item j are moved from period t + 1 to t. Then,

the new schedule of item i in periods t and t +

1 becomes

jt jtX X m′ = + and, , 1 , 1j t j tX X m+ +′ = −

and the new inventory levels of item i and its

child items are changed as

jt jtI I m′ = − and

, ,j jk t l k t l jkI I m a+ +′ = + ⋅ for k ∈ H(j).

From the nonnegativity constraints of the

disassembly quantity and the inventory level,

the movable disassembly quantity from period

t + 1 to t is selected in the range defined as

, 10 min{ , }i t jtm X I+≤ ≤ .

 (8

)

Unlike the forward move, the backward move

increases the inventory holding cost, which

can be calculated as

()

()m
j j jk k

k H j

B m h a h
∈

= ⋅ − ⋅∑

 (9

)

As stated earlier, the improvement in the

second stage is done by the pairwise move,

i.e., forward and backward moves at the same

time. That is, an improved solution can be

obtained if the cost decrease of the forward

move is greater than the cost increase of the

backward move while the capacity and

inventory balance constraints are satisfied.

The improvement method requires the

methods to check the feasibility on the

capacity constraints and to determine the

amount of moves.

Suppose that n disassembly operations of

parent item i are moved from period t to t + 1,

i.e., forward move, and m disassembly

operations of item j are moved from period t +

1 to t at the same time, i.e., backward move.

Then, this pairwise move results in the

remaining capacities

t t i jR R n g m g′ = + ⋅ − ⋅ , and (10)

1 1t t i jR R n g m g+ +′ = − ⋅ + ⋅ (11)

where
1

1
.li

t t i iti
R C g X

−
== − ⋅∑ From this, we can

see that the pairwise move is feasible if both

remaining capacities are nonnegative.

Now, we explain the method to determine

the amount of moves. In the move, we

determine the best (n*, m*) using

(,)

(*, *) argmax{ }n m
i j

n m

n m F B= + .

In the method, we set initially the forward

move amount n as

,

()
min{ min , }ik t l

it
k H i

ik

I
n X

a

+

∈

 
=  

 
,

which is the maximum value in the range (6).

Then, the amount n of forward move is

decreased one by one until n = 0, which is the

minimum value in the range (6). Here, given

amount n, the backward move amount m is

determined as

1()
max{ ,0}i t

j

n g R
m

g

+
 ⋅ −

=  
  

since the backward move amount m should

have the minimum value in the range (8) since

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 720 -

the backward move results in the increase of

costs as in (7) and also remaining capacities

after the move should not be nonnegative,

which are defined in (10) and (11).

The procedure of the second stage is

summarized below.

Procedure 2.Procedure 2.Procedure 2.Procedure 2. (Improvement)

Step 1. Set i = 1

Step 2. For parent i, do the following

steps:

(a) Set t = 1 and j = i + 1

(b) Find the best backward and forward

moves (n*, m*) using the method

explained earlier. If the best move

results in cost reduction, update the

solution by performing the pairwise

move.

(c) Set j = j + 1. If j > il – 1, set t = t + 1.

If t > T , go to Step 3 and otherwise,

go to (b).

Step 3. Set i = i + 1, if i > il – 1, stop.

Otherwise, go to Step 2.

4. Computational Experiments4. Computational Experiments4. Computational Experiments4. Computational Experiments

To show the performance of the two-stage

heuristic suggested in this paper,

computational experiments were done on a

number of randomly generated test problems.

Also, the two-stage heuristic is compared with

the algorithm of Kim et al. [6] (without and

with the improvement method) although it is

developed to minimize the number of products

disassembled. Two performance measures

were used in this test: percentage deviation

from the optimal solution value and CPU

seconds. Here, optimal solution values were

obtained by solving problem [P] directly using

CPLEX 9.0. The algorithm and the program to

generate integer programs were coded in C

and tests were done on a personal computer

with a Pentium processor operating at 2.0 GHz

clock speed.

For the test, 25 problems were generated for

each combination of two levels of capacity

tightness (loose and tight), five levels of the

number of items (10, 20, 30, 40 and 50) and

three levels of the number of periods (10,

20and 30). For each level of the number of

items, 5 disassembly products structures (and

hence totally 15) were randomly generated. In

the disassembly structures, the number of

child items for each parent and its yield was

generated from DU(2,5) and DU(1,3)

respectively. Here, DU(a, b) is the discrete

uniform distribution with range [a, b].

Disassembly lead time was set to 0, 1, and 2

with probabilities, 0.2, 0.7, and 0.1,

respectively. External scheduled receipt and

initial inventory levels were set to 0 without

loss of generality.

For each disassembly structure, 5 problems

with different data were generated for each

level of the number of periods. Disassembly

operation costs were generated from

DU(50,100), inventory holding costs were

generated from DU(5,10). Capacity per period

was set to 400, 480, and 540 with probabilities,

0.2, 0.5, and 0.3, respectively. Disassembly

time was generated from DU(1,4). The demand

is generated using the following procedure:

(1) Demand is initially generated from 0 or

DU(50,200) with probabilities 0.1 and 0.9,

respectively;

(2) With the demand, the problem is solved

using the GT algorithm

(3) The overall capacity usage(CU) of its

solution is calculated using
1

1 1

li t T

i iti t
CU g X

− =

= =
= ⋅∑ ∑ ,

where Xit is the solution of the GT

algorithm.

(4) Demand is regenerated using

/it itd TC CU dα ′= ⋅ ⋅   ,

where α is a parameter that represents

capacity tightness (α is set to 0.7 and 0.9

for the cases of loose and tight capacity

tightness), TC is the sum of capacities

over the planning horizon and dit′ is the

demand generated initially in (1).

The test results are summarized in Table

1(a) and (b) that shows the average

percentage deviations from the optimal

solution values and average CPU seconds. It

can be seen from the tables that the two-stage

heuristic gives very near optimal solutions:

within 0.7% in overall average for the case of

tight capacity and 0.1% for the case of loose

capacity. Also, significant improvements can

be obtained in the second stage, which shows

the effectiveness of the improvement

procedure. However, the two-stage heuristic

could not give feasible solutions for a few

problems in the case of tight capacity. In this

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 721 -

case, the algorithm of Kim et al [6] with the

improvement stage can be used although its

performance is not better than the two-stage

heuristic. Finally, the CPU seconds of the two-

stage heuristic were much smaller than CPLEX.

In fact, in the case of tight capacity, CPLEX

requires long CPU seconds and they are not

consistent. Therefore, we can argue that the

two-stage heuristic can be used to solve the

practical sized problems.

Table 1. Table 1. Table 1. Table 1. Test results for the suggested

algorithm

(a) Case of tight capacity

Percentage

deviations
CPU seconds Numbe

r of

items

Numbe

r of

periods Two-

stage
Kim et al.1

Two-

stage

CPLE

X

10 10 4.5 (1.3)
2
 7.7 (6.8)

3
 0.000

*
 0.8

10 20 2.7 (0.6) 13.9 (13.2) 0.000 164.0

10 30 3.5 (0.6) 14.6 (14.0) 0.000 4.3

20 10 2.0 (0.3) 12.5 (09.7) 0.000 6.7

20 20 3.1 (0.9) 17.8 (15.0) 0.000 226.9

20 30 2.2 (0.5) 22.4 (19.5) 0.000 532.8

30 10 3.7 (0.6) 10.2 (6.6) 0.000 0.4

30 20 2.7 (0.7) 14.9 (11.7) 0.000 21.6

30 30 2.0 (0.3) 17.2 (15.0) 0.000 0.7

40 10 2.6 (0.7) 8.4 (5.3) 0.001 3.5

40 20 3.4 (0.8) 16.9 (13.1) 0.001 436.1

40 30 1.7 (0.5) 20.6 (16.9) 0.000 443.1

50 10 3.6 (1.3) 8.5 (5.0) 0.002 0.2

50 20 3.3 (0.8) 18.0 (13.2) 0.000 20.5

50 30 1.8 (0.2) 24.2 (19.9) 0.001 2.9
1
 The algorithm of Kim et al [6]

2,3
 average percentage deviation out of 25 problems

without and with (in parenthesis) the improvement

stage procedure
*
 Average CPU seconds is less than 0.0005s

(b) Case of loose capacity

Percentage

deviations
CPU seconds Numbe

r of

items

Numbe

r of

periods Two-

stage
Kim et al.

Two-

stage

CPLE

X

10 10 0.8 (0.1) 26.0 (24.3) 0.000 0.02

10 20 0.6 (0.1) 43.5 (42.6) 0.000 0.03

10 30 0.1 (0.06) 40.9 (40.5) 0.000 0.04

20 10 1.1 (0.4) 39.9 (35.3) 0.000 0.04

20 20
0.13

(0.11)
55.1 (51.8) 0.000 0.04

20 30
0.13

(0.01)
59.7 (57.1) 0.000 0.10

30 10 0.4 (0.1) 33.2 (29.5) 0.000 0.03

30 20 0.2 (0.05) 49.0 (44.7) 0.000 0.06

30 30 0.1 (0.01) 54.5 (51.0) 0.001 0.11

40 10 1.0 (0.2) 30.8 (23.2) 0.000 6.96

40 20 0.1 (0.02) 46.1 (40.1) 0.001 0.11

40 30 0.1 (0.01) 54.2 (49.0) 0.000 37.73

50 10 1.4 (0.3) 28.4 (22.3) 0.000 0.11

50 20 0.2 (0.03) 47.7 (40.8) 0.001 0.12

50 30
0.03

(0.01)
58.0 (52.5) 0.001 0.21

5. Concluding Remarks5. Concluding Remarks5. Concluding Remarks5. Concluding Remarks

This paper considered the capacitated

disassembly scheduling problem with single

product type without parts commonality for the

objective of minimizing the sum of disassembly

operation and inventory holding costs. To

solve the problem, a two-stage heuristic,

which consists of construction and

improvement algorithms, was suggested.

Computational experiments on a number of

randomly generated test problems show that

the two-stage heuristic can give optimal or

very near optimal solutions within very short

amount of computation time.

This research can be extended in several

ways. First, it is needed to consider more

general cases such as multiple product types

with part commonality. Here, the part

commonality introduces one or more

procurement sources for each common part

and hence makes the problem difficult to solve.

Second, like other disassembly problems,

uncertainties such as stochastic demand,

defective parts/components, and stochastic

disassembly operation times are important

further considerations.

ReferencesReferencesReferencesReferences

1. Boothroyd, G. and Alting, L., 1992, Design for

assembly and disassembly, Annals of the CIRP

41, 625-636

2. Gupta, S. M. and Taleb, K. N., 1994, Scheduling

disassembly, International Journal of Production
Research 32, 1857-1886.

3. Jovane, F,. Alting, L., Armoillotta, A., Eversheirm,

W., Feldmann, K., Seliger, G., and Roth, N., 1993,

A key issue in product life cycle: disassembly,

Annals of the CIRP .42, 651-658

4. Kim, H.-J., Lee, D.-H., Xirouchakis, P., and Züst,

R., 2003, Disassembly scheduling with multiple

product types, Annals of the CIRP 52, 403-406.

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 722 -

5. Kim, H.-J., Lee, D.-H., and Xirouchakis, P., 2004,

A Lagrangean heuristic algorithm for

disassembly scheduling with capacity constraints,

Technical Report, Department of Mechanical

Engineering, Swiss Federal Institute of

Technology – Lausanne (EPFL).

6. Kim, J.-G., Jeon, H.-B., Kim, H.-J., Lee, D.-H.,

and Xirouchakis, P., 2005, Capacitated

disassembly scheduling: minimizing the number

of products disassembled, to appear in Lecture
Note in Computer Science.

7. Lambert, A. J. D., 2003, Disassembly

sequencing: a survey,” International Journal of
Production Research 41, 3721-3759.

8. Lee, D.-H., Kang, J.-G., and Xirouchakis, P.,

2001, Disassembly planning and scheduling:

review and further research”. Proceedings of the
Institution of Mechanical Engineers: Journal of
Engineering Manu-facture-Part B 215, 695-710.

9. Lee, D.-H., Kim, H.-J., Choi, G., and Xirouchakis,

P., 2004, Disassembly scheduling: integer

programming models, Proceedings of the
Institution of Mechanical Engineers: Journal of
Engineering Manufacture-Part B 218, 1357-

1372.

10. Lee, D.-H. and Xirouchakis, P., 2004, A two-

stage heuristic for disassembly scheduling with

assembly product structure, Journal of the
Operational Research Society 55, 287-297.

11. Lee, D.-H., Xirouchakis, P., and Züst, R., 2002,

Disassembly scheduling with capacity

constraints”, Annals of the CIRP.51, 387-390.

12. O’Shea, B., Grewal, S. S., and Kaebernick, H.,

1998, State of the art literature survey on

disassembly planning, Concurrent Engineering:
Research and Application 6, 345-357.

13. Santochi, M., Dini, G., and Failli, F., 2002,

Computer aided disassembly planning: state of

the art and perspectives, Annals of the CIRP.51,

1-23.

14. Taleb, K. N. and Gupta, S. M., 1997, Disassembly

of multiple product structures, Computers and
Industrial Engineering 32, 949-961

15. Taleb, K. N., Gupta, S. M., and Brennan, L., 1997,

Disassembly of complex product structures with

parts and materials commonality, Production
Planning and Control 8, 255-269.

	MAIN
	TABLE OF CONTENTS

