3차원 원격 디자인 협업 환경 개발을 위한 디자인회의의 형태의 비교 관찰
A study of collaborative behaviors in design review meetings for developing 3D remote collaborative design environments

시공경
한국과학기술원 산업디자인학과

남택진
한국과학기술원 산업디자인학과

Sakong, Kyung
Dept. of Industrial Design, KAIST
Nam, Tek-Jin
Dept. of Industrial Design, KAIST

* Key words: Collaborative Design, Design Review, Observation Study, 3D CAD

1. 서론
제품디자인 프로세스 전반에 걸쳐서 디자이너들 간의 긴밀한 협업은 프로젝트 성공을 위해 필수적이다. 그 중에서도 제품 출시 직전의 3D 모델의 디자인을 위한 협업은 높은 시간의 축면에서 매우 중요하다. 세계 각 지역 국경을 넘고 있어 디자인 분야에서도 원격 협업의 필요성은 높아지고 있으며, 따라서 이를 지원하는 원격 디자인 협업 환경의 개발이 요구된다. 본 연구에서는 3차원 모델을 다루는 원격 디자인 협업 환경의 개발을 궁극적 목표로 한다. 이 기계의 협업 환경에서 원격 협업의 개발에 접근해본 결과, 본 연구에 있어서는 3차원모델을 다루는 원격 수단의 개발이 필요하다고 생각한다. 이에 의해 본 논문에서는 디자인 회의에서 이루어지는 협업에 관한 관찰을 실시하였고, 이의 분석을 바탕으로 원활한 사물도 구현하여 원격 협업 환경의 개발에 적용될 기준을 마련하였다.

2. 관찰실험(Observation Study)
관찰실험은 디자인 프로세스 중에서도 디자인 리뷰 회의에서 발생하는 협업 형태에 초점을 두었다. 이는 디자인 작업 자체는 개인적으로 수행되는 경향이 크고, 이에 이어지는 디자인 리뷰 단계에서의 긴밀하고 빈번한 협업이 요구된다던 분석을 바탕으로 한다.

2-1. 실험계획
실험 대상은 9명의 산업디자인학과 학생들로 3명이 하나의 디자인 팀을 구성하여 총 3개의 팀의 디자인 협업을 관찰하였으며, 관찰은 비디오로 기록되어 실험 후 비디오 분석을 실시하였다.

각 팀에게 주어진 디자인 브리핑은 새로운 디자인 카테고리를 함께 개발하는 것으로, 다음과 같이 총 3명의 디자인 회의를 진행하였고 각 디자인 리뷰는 2명의 팀원으로 구성하여 각 팀의 작업을 수행하였다. 참여자들은 실제 디자인 컨설팅 과정에서 유사한 프로세스를 거치면서 디자인 테스팅에 집중할 수 있었다.

• 1차 회의: 디자인 브리핑 및 브레인스테밍
• 2차 회의: 디자인 리뷰(스케치)
• 3차 회의: 디자인 리뷰(모델링)

3개의 디자인 팀은 1차 팀이 각기 다른 환경에서 디자인 리뷰 회의를 진행하도록 실시하였다. 이를 통해 각 디자인 팀이 동일 공간과 원격공간의 차이점을 파악하고자 하였으며, 동시에 협업대상물이 2차원 스케치일 때 3차원 모델링일 때 협업 형태가 어떻게 다르며 원격에서 어떤 제약이 있는지 이해하고자 하였다.

[표 1] 각 팀별 회의 흐름

<table>
<thead>
<tr>
<th>진료수료</th>
<th>팀1</th>
<th>팀2</th>
<th>팀3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1차(브레인스테밍)</td>
<td>동일공간</td>
<td>동일공간</td>
<td>동일공간</td>
</tr>
<tr>
<td>2차(스케치리뷰)</td>
<td>동일공간</td>
<td>동일공간</td>
<td>원격공간</td>
</tr>
<tr>
<td>3차(모델링리뷰)</td>
<td>동일공간</td>
<td>원격공간</td>
<td>원격공간</td>
</tr>
</tbody>
</table>

동일공간 회의는 주의, 터널, 대화, 2차원 및 3차원 모델링을 원화한 팀의 작업환경이 기존 작업환경이 되었고, 원격공간 회의에서는 각 팀 PC를 작업공간으로 하여 네트워크(NetMeeting)와 메신저(MSN)를 이용하여 상호의 모습, 음성과를 공유하고 체험, 화이트보드, 프로그램공유, 데스크톱 공유를 지원하였다.

2-2. 주요관찰소요 및 분석방법
문헌조사를 및 관찰연구를 통해 협업에 중요한 요인들을 분석하여 다음의 세 가지 측면에서 주요관찰소요를 추출하였다.

• 디자인프로세스: 스케치, 모델링, 참고문헌
• 디자인환경: 2D공유공간, 3D공유공간, 환경공유
• 의사소통: 지시, 제안, 표정, 시각

각 회의의 비디오 분석을 통해 관찰소요들의 발생을 시간에 따라 그림과 같이 기록하였다. 이를 통해 각 디자인리뷰 회의의 성격에 따른 협업환경의 특징과 편안도를 파악할 수 있었다.

[그림 1] 관찰소요의 발생 틀도와 레이아웃의 분석

또한 참여자 설문 및 인터뷰를 실시하여, 각 디자인 리뷰 회의에서 인식하기 어려웠던 요소와 원활한 협업에 중요한 영향을 미치는 요소를 파악하였다.

182
2-3. 관찰결과 및 발견점
참여자들은 스케치보드는 모델링을 다룰 때, 동일공간보다는 원적공간에서 협업에 이끌었음을 보였다. 스케치 레이아웃을 위한 원적 협업에서 참여자의들은 기존에 제공되는 도구를 활용하여 큰 어려움 없이 협업을 진행하였고, 모델링 레이아웃에서는 모델링을 많은 시간이 주로 소요하고, 대화의 효율이 저조 끝이지는 현상을 보였다. 관찰결과와 설문 분석을 통해 3차원을 다루는 원적 디자인 환경에서 중요한 요소들을 다음과 같이 파악할 수 있었다.

지시와 제스처 정보 안식의 중요성
각 화면에서 관찰요소의 발생 비율을 분석한 결과(표2), 원적 환경에서 지시와 제스처의 비율이 훨씬 줄어든 것을 알 수 있다. 반면, 스케치 레이아웃은 오히려 높았는데, 모델링 레이아웃에서는 부적違의 화이트보드 기능을 비롯한 사용하는 현상을 보였다. 이를 위해 설문한 스케치의 화이트보드를 보면 동일공간에서는 제스처로 이루어졌던 동작의 설명이나 협업상황에 대한 지시가 상당부분 포함되어 있다. 즉, 환경에서 지시와 제스처의 비율이 줄었지만, 이의 필요성은 여전히 높은율을 알 수 있다.

<table>
<thead>
<tr>
<th>표2</th>
<th>각 화면에서 발생한 관찰요소 비율 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>관찰요소</td>
<td>스케치보드 (동일공간)</td>
</tr>
<tr>
<td>지시</td>
<td>18.9</td>
</tr>
<tr>
<td>제스처</td>
<td>11.7</td>
</tr>
<tr>
<td>스케치</td>
<td>7</td>
</tr>
<tr>
<td>모델링</td>
<td>0</td>
</tr>
</tbody>
</table>

설문은 통해 스케치 보다 모델링 레이아웃에서 제스처의 중요성이 낮아진 것을 알 수 있었다(4.6~2.3/5.0). 모델링 레이아웃에서는 보다 디자인이 구체화되어 제스처를 활용한 논의가 상대적으로 줄어든 것이 그 원인으로 분석된다.

표포화는 원활한 협업상황의 공유와 조직이 중요
지시 정보 다음으로 원활한 협업에 중요한 영향을 미쳐요소는 협업상황을 수정하고 협업에 필요한 것으로 나타났다. 대화와 해석의 표시는 이에 대한 핵심적 중요성을 높였던 것으로 보았다. 또한, 상대의 표시 정보는 가장 많았었다. 특히 원적 환경에서 협업 시 디자인 협업상황에서의 중요성이 가장 중요해서 참여자들은 지시 상대의 표시를 확인할 수 있는 협업 화면을 보지 않게 되었다. 이는 동일공간에서 매우 빈번히 표적화환과 사신교환에 이루어진 것과 큰 차이점이다.

3. 협동적 3D CAD 환경을 위한 요구사항
관찰결과와 설문을 바탕으로 3차원 원적 협업 환경을 위한 요구사항을 도출하였다.

상표와 표심의 인식: 디자인상황에서 다른지표와 작동식을 위한 제스처가 공유되어야 한다.

모드 인식: 상표와 표심이 어떤 조작을 하는지 인식할 수 있어야 한다.

4. 결론
본 연구에서는 디자인 레이아웃의 환경에서 협업 정보 공유를 통한 원적 협업을 다루는 원적 디자인 협업 환경에 있어서 무엇보다도 협업 상황을 원활한 공유가 중요하며, 협업공간이 필요하다는 것을 알 수 있었다. 이에 상표와 표심의 표포화는 디자인상황과 관련된 지시와 제스처 정보가 원활한 협업을 위한 중요 요소로 파악되었으며, 본 연구의 관찰결과와 요구사항을 기반으로 새로운 3차원 원적 협업 환경의 개발을 진행하는 것이 향후 연구 과제이다.

참고문헌
- Nielson, J. R. and Mackinlay, J. D., 1994

183