Fluorine-free MOD Solution for High J_c REBCO Superconducting Films

Byung-Joo Kim, Sun-Won Im, Ho-Jin Kim, Gye-Won Hong and Hee-Gyoun Lee Korea Polytechnic University, 2121 Jungwang dong, Siheung Shi, Gyunggi-do, Korea

Fluorine-free new MOD solution was developed for high J_c REBCO superconducting films. Various organic acid were used in order to prepare fluorine-free MOD solution. Diluted fluorine-free metalorganic precursor solution in methanol was coated on LaAlO₃(001) substrate by dip coating method. Processing parameters such as oxygen partial pressure, water vapor, ramping rate and pyrolysis temperature etc were controlled in order to obtain a good epitaxial film with a high J_c. 0.5 micron-thick film was obtained by single coating and no crack was present at calcined films. Oxygen partial pressure was varied in the range of 100-1,000 ppm and conversion heat treatment was carried out at the temperature range of 725-765°C. A critical transition temperature (T_c) of 90 K and a critical transport current density (J_c) of > 0.5 MA/cm² (77 K and self-field) were obtained for the GdBCO film grown on LAO single crystal substrate with a thickness of 0.5 micron. I_c was determined by utilizing a transport measurement. SEM observations showed that the growth behavior of Y123 grains is different from that of TFA-MOD process and porous film was formed. It is thought that fluorine-free new MOD solution is promising for high quality REBCO films.

keywords: Fluorine-free, TFA-MOD, Jc, YBCO

Acknowledgement

This research(2003-A-AA14-P-02) was partly supported by the grant from Energy Education Center program funded by Ministry of Commerce, Industry and Energy(MOCIE), Republic of Korea.