Influence of the SrSO₄ Addition on BSCCO-2212 Bulk Superconductors Kyu Tae Kim^a, Jin Sung Lee^a, Kyung Min Yoon^a, Seok Hern Jang^a, Jinho Joo^{*, a}, Gye-Won Hong^b, Chan-Joong Kim^c, Hye-Lim Kim^d, Ok-Bae Hyun^d ^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746, Korea ^b The Department of Electronic Engineering, Korea Polytechnic University, Siheung, GyungGi-Do 429-793, Korea ^c Nuclear Material Development Team, Korea Atomic Energy Research Institute, Daejeon 305-353, Korea ^d Power System Laboratory, Korea Electric Power Research Institute, Daejeon 305-380, Korea We fabricated BSCCO-2212 (2212) rod by melt casting process (MCP) and evaluated the effect of the strontium sulfates (SrSO₄) addition on the texture, microstructure, critical current and temperature, and mechanical properties of BSCCO-2212. It was observed that the addition of SrSO₄ improved the critical current (I_c) and mechanical properties of the 2212. The I_c of 2212 increased as the SrSO₄ content increased and reached peak value (260 A at 77 K) at the content of 6 wt.%. On the other hand, XRD analysis showed that SrSO₄ chemically compatible with 2212, and thus SrSO₄ addition did not affect the critical temperature of the 2212. In addition, the addition of SrSO₄ had a beneficial effect on the mechanical hardness and strength of 2212. keywords: BSCCO-2212, melt casting process, microstructure, strontium sulfates, texture ## Acknowledgement This research was supported by Electric Power Industry R&D Program funded by the Ministry of Commerce, Industry, and Energy, Republic of Korea