Oscillatory Josephson-Vortex Resistance in Stacks of Bi₂Sr₂CaCu₂O_{8+x} Intrinsic Josephson Junctions

Jae-Hyun Choi^a, Myung-Ho Bae^a, Sang-Jae Kim^b, and Hu-Jong Lee^a

^a Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

^b Department of Mechatronics Engineering, Cheju National University, Jeju 690-756, Republic of Korea

We report the observation of the periodic oscillation of the Josephson-votex-flow resistance in rectangular stacks of $Bi_2Sr_2CaCu_2O_{8+x}$ (Bi-2212) intrinsic Josephson junctions. A piece of Bi-2212 single crystal containing a few tens of intrinsic junctions was sandwiched between two gold electrodes and fabricated into a rectangular shape with the typical lateral size of about $2x10~\mu m^2$ using the combination of e-beam lithography, wide and focused ion-beam etching. In a tesla-range magnetic field applied in parallel with the junction planes the oscillation of the vortex-flow resistance was observed at temperatures in a wide range near 60 K. The oscillation results from the interplay between the triangular Josephson vortex lattice and the potential barrier at the boundary of a single crystal. We present the oscillation for varying bias currents, external magnetic fields, and temperatures. The tilt-angle dependence of the vortex dynamics will also be discussed.

keywords: Josephson vortex, Josephson vortex-flow resistance, tunneling magnetoresistance oscillation, boundary vortex potential