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1. INTRODUCTION 
 

In general, system identification is finding out 
mathematical system model through experiment data. There 
are too many methods of system identification. They can be 
classified in main two categories. The first one is 
frequency-domain system identification and another is 
time-domain system identification. In this paper time-domain 
system identification is dealt. In other words, this paper is 
focused on estimating parameters of system model in 
time-domain. 

 
In system identification process the most important thing is 

what model structure should be chosen to represent a real 
system. The system identification method is determined after 
system model structure would be fixed. But a few system 
identification methods in time-domain cannot choose model 
structure. It is possible to say that they would rather be able 
not to be determined as a structure, which stands for a real 
system more properly. For example, we have a system but we 
don’t have any information about it except input data and 
output data. In this situation we can find out a mathematical 
model about this system using some system identification 
methods. But it is very hard to get system model as a 
meaningful structure, that is, controllable canonical form or 
observable canonical form. The output data have physical 
properties, neither do the states in identified system because 
we cannot assign model structure to have states with physical 
properties. This problem arises in the methods that system 
parameter is estimated through singular value decomposition 
(SVD) of Markov parameters such as eigen system realization 
(Juang, 1994) and subspace identification (Overschee and 
Moor, 1996), etc. Due to this reason, if it is possible to 
identify a system to mathematical model we want to, it is 
really useful to understand system’s behaviour and design a 
controller to satisfy specified performance.  

 
The reason why this study deals with on-line system 

identification is that because the data used in parameter 
estimation are not only output data from real system also 
estimated states. In order to identify the real system as a 
system model having the structure we want, all states must be 

measured through output. But it is possible in not all system. 
A state observer is used in order to estimate states in the 
system that not all states can be measured as output. These 
estimated states are used instead of the immeasurable states 
through output. So mathematical system model is needed to 
implement state observer but nothing is known about system 
except input data and output data. To work out this problem, 
on-line system identification method is used. On-line system 
identification means that acquiring data to be used in 
parameter estimation and identification process are performed 
simultaneously in the same sample. 

 
2. SYSTEM IDENTIFICATION 

 
2.1 System parameter estimation – state model 
 

This study is focused on linear time-invariant (LTI) system 
in discrete time only. LTI system model is subjected as 
follows  
 

( 1) ( ) ( )x k Ax k Bu k+ = + , (1) 
( ) ( )y k Cx k= . (2) 

 
In (1) and (2), the parameters that should be estimated are 

system matrixes ,A B  and C . Using (1) and (2), if 
transform those equations into more convenient form,  
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Taking transpose in (3), 

 

[ ][ ]( ) ( 1) ( 1)y k x k u k C A C B ′′ ′ ′= − − ⋅ ⋅ . (4) 

 
Now suppose that available sample data is from k =1, 2, 

" , N . Next equation is accomplished. 
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Substituting system matrixes with θ ,  

 
T

N NY θ= Φ  (6) 
 

With regression matrix T
NΦ , (data matrix) 
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With (5)-(7), we can estimate the system parameter as θ̂  
by least-square estimation (LSE) method 
 

1ˆ ˆ ˆ ˆ ˆ ( )T T
N N N NC A C B Yθ −′⎡ ⎤= ⋅ ⋅ = Φ Φ Φ⎣ ⎦

 (8) 

 
As previously states all of the state is possible to measure 

through output, that is, C is identity matrix, estimated 
parameters in (8) changes to 
 

1ˆ ˆ ˆ ( )T T
N N N NA B Yθ −′⎡ ⎤= = Φ Φ Φ⎣ ⎦

 (9) 

 
But if not all states can be measured, that is, C  is not 

identity matrix or number of output is less than system order, 

estimated parameters θ̂  cannot cover whole parameters in 
real system. To prove this problem, estimated states can be 
used in regression matrix (7) instead of state in regression 
matrix 

 
2.2 Sate estimation for parameter estimation 
 

Now suppose estimated state as ˆ( )x k , then we get next 
new regression matrix, 
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Using this regression matrix, system parameter is estimated 

in similar method with (8) and (9). To estimate state, so many 
state observers are useful, e.g. Kalman filter, Luenberger 
observer etc. In this paper Kalman filter is used for state 
estimation.  

 
2.3 On-line system identification 
 

In this time you can notice that there are no ways to 

implement state observer whatever the observer is. That is, the 
system model is known to implement all of the state observers 
including Kalman filter. But anything is not known about the 
system except input and output data of the system. In other 
words, any state observer that is necessary to system 
identification (system parameter estimation) cannot be 
implemented. On-line system identification is possible to 
apply to solve this contradiction. On-line system identification 
is a recursive method that estimates system parameters using 
sampled data in every sample. As applying this on-line system 
identification method, we can predict all states in the system 
with the results of estimation of parameters in every sample 
time. Under this situation, the LSE method should be changed 
into recursive form in order to be able to estimate parameters 
in every sampling time. That is, we use recursive LSE (Ljung, 
1999) to estimate parameters of the system. But parameter 
estimation is possible with Kalman filter. So Kalman filter is 
used also in system parameter estimation. The equations of 
Kalman filter for parameter estimation are as follows. 
 
ˆ ˆ ˆ( 1) ( ) ( )[ ( 1) ( 1)]p pk k K k y k y kθ θ+ = + + − +  (11) 

1ˆ ˆ ˆ( 1) ( ) [ ( ) ( )]p p p pK k P k C C P k C R k −′ ′ ′+ = +  (12) 
ˆ( 1) [ ( 1) ] ( )p p pP k I K k C P k′+ = − +  (13) 

ˆ ˆ ˆA Bθ ′⎡ ⎤= ⎣ ⎦
 (14) 

 
where [ ] ˆˆ ˆ( 1) ( ) ( ) ( )py k x k u k kθ+ = i  and ˆ

nC I= , n  is 

system order. Eventually Kalman filter for parameter 
estimation (11)-(14) brings to same results as those of 
recursive LSE. After system parameter estimation by Kalman 
filter, estimated parameters are used again in state estimation 
by another Kalman filter that is a state observer in same 
sampling time. Another Kalman filter for state estimation is as 
follows. 
 

ˆ ˆˆ ˆ( 1 | ) ( ) ( )x k k Ax k Bu k+ = +  (15)  
ˆ ˆ( 1| ) ( | ) ( )P k k AP k k A Q k′ ′+ = + Γ Γ  (16) 

ˆ ˆ ˆ( 1) ( 1| ) ( 1)[ ( 1) ( 1)]x k x k k K k y k y k+ = + + + + − +  (17) 
1( 1) ( 1| ) [ ( 1| ) ( 1)]K k P k k C C P k k C R k −′ ′ ′+ = + + + +  (18) 

( 1 | 1) [ ( 1) ] ( 1 | )P k k I K k C P k k′+ + = − + +  (19) 
 
where ˆ ˆ( 1) ( 1| )y k C x k k+ = ⋅ + . 

 
In brief, we can estimate parameters in system by on-line 

through (11)-(14) using input and output data from real system 
at present sample time k . After that, the result from 
parameter estimation is based to estimation of states that will 
be caused in next sample time 1k +  through (15)-(19). 
These states estimation results from (15)-(19) will be referred 
again by parameter estimation process at the next sample time 

1k + . As these recursive processes are repeated, system 
parameter estimation results will be convergent to the real 
value of parameters of system. 

 

3. SIMULATION AND RESULTS 
  

In this section, we validate the algorithm described in 
previous section by simulation. The plant used in simulation is 
inverted pendulum system – SIP02 manufactured by Quanser 
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Industrial. Inverted pendulum is nonlinear system inherently, 
but we identity the nonlinear inverted pendulum system as 
linear system. That is, the model structure to be identified is 
linear model.  This system has one input and four outputs and 
the system order is 4. First of all, we need to have nonlinear 
dynamic equation of inverted pendulum. The nonlinear 
dynamic equation is referred in a manual of SIP02. 

Inverted pendulum is an unstable system, so we need 
stabilizing controller in order to acquire data to be used in 
parameter estimation safely. A stabilizing controller is 
constructed by LQR controller, and LQR gain is determined 
base on the parameters in Quanser manual. Next figure is a 
block diagram made with Simulink model.  
 

 
 
Fig. 1 Simulink model of nonlinear inverted pendulum system 

with LQR stabilizing controller. 
 

In figure 1 the data used in parameter estimation are input 
to the nonlinear system and output from it. The input data is 
control input from the stabilizing controller to nonlinear 
system model, and the output data are the system outputs that 
are composed 4 elements - position of cart, velocity of cart, 
angle of pole and angular velocity of pole.  
 

The results of the parameter estimation of the linearized 
system with this nonlinear system are listed in next table. 
 
Table 1 Comparisons parameters in matrix and eigen value of 

real linearized system with identified system. 
 

 
 

The sample time for this simulation of system identification 
is 0.01 second, and systems listed in Table 1 are discrete-time 
systems. The initial conditions are listed next table. 
 

 

Table 2 Initial values of system parameters and states. 
 

 
 

As we can see Table 1 and 2, the parameters in identified 
system are almost identical with the ones in real system. And 
the convergence of estimated parameters can be confirmed by 
depicting the variation of the elements in the matrixes A  
and B  as time goes.  

 
Fig. 2. Convergence of parameters 12a , 14a  and 24a . 

 

 
Fig. 3. Convergence of parameters 21a , 41a  and 3b . 
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Fig. 4. Convergence of parameters 1b , 2b  and 4b . 

 
Table 3 Definition of each parameter in matrix. 

 

 
 

The graphs show that all elements in each matrix well 
converge. This means that method to estimate parameters of 
system using states estimated through state observer is indeed 
reasonable. 

 
 
 
 

4. CONCLUSION 
 

Till now we studied on-line system identification with state 
observer. This study confirmed proposed algorithm through 
system identification of the nonlinear inverted pendulum 
system into linearized system. Even though the example it 
estimation of parameters of the system whose state is 
measured by output, if we alternate the proposed algorithm, 
parameters of the system that not all states can be measured by 
output in, is possible to be estimated. 
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