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1. INTRODUCTION 
 

The definition of a ground electrode is “a conductor or 
group of conductors in intimate contact with the earth for the 
purpose of providing a connection with the soil.” This 
definition does not refer to an actual ohm resistance value of 
the electrode. The resistance value is determined by the 
resistivity of soil with which these electrodes are in contact. 
As in the case of ground water, the current must pass through 
the soil to the assumed earth potential of 0 . When an object 
is grounded, it is then forced to assume the same zero potential 
as the earth. If the potential of the grounded object is higher or 
lower, current will pass through the grounding connection 
until the potential of the object and earth are the same. The 
earth electrode is that connection path from the equipment to 
the earth. The resistance of the electrode, measured in ohms, 
determines how quickly and at what potential energy is 
equalized. Hence, grounding is necessary to maintain an 
object’s potential equal to that of the earth’s [1]. 

Ω

The soil is the dynamic conductor for steady-state, natural, 
and man-made fault currents. Most soils naturally contain 
varying amounts of electrolytes that conduct electricity. As a 
result, the addition of moisture will enhance or reduce the 
conductive properties. In general, however, the greater the 
moisture contents in soil, the lower the resistivity. 
Temperature, like moisture, can have a significant impact on 
resistivity. Soil resistivity varies with temperature, especially 
when reaching 0 °C (the moisture in the soil freezes and the 
resistivity increases by almost three times its unfrozen value).  

To determine the conductivity of the soil, a four-point 
ground meter is utilized. This test requires the user to place 
four equally spaced auxiliary probes into the earth to 
determine the actual soil resistance, traditionally in ohms-cm. 
This test must take place around the entire area to determine 
the soil value at all locations. This test is done at different 
spacing, 5 to 40 feet, to determine the resistance value at 
various depths. This knowledge will aid in the design and 
implementation of the correct ground system to meet the 
particular site requirements [2]. Soil values can range from 
500  with large amounts of electrolytes to over 1 
million  in sandy dry soil. 

 cmΩ
 cmΩ

Electrical Resistance Tomography (ERT) or, more 
generally electrical impedance tomography, is receiving an 
increasing interest from the scientific and industrial 
community aiming to develop a cheap and fast inspection tool 
for industrial applications [3]. Many applications of ERT have 

also been found in the geophysical field because the electrical 
resistivity is one of the most variables of physical properties in 
the subsurface [4]. The purpose of nondestructive ERT 
systems is to visualize internal regions of the object by means 
of external electrodes. Due to varying resistivities of internal 
materials, electric current passed through the object results in 
voltage changes measured on the surface. The performance of 
an ERT system can be stated in terms of spatial resolution of 
resistivity distribution, resistivity contrast and some other 
factors. 

The majority of existing procedures for reconstructing 
resistivity distribution proved by electrical fields have been 
primarily based on linearized inversion techniques such as 
those used in diffraction or diffusion tomography. A general 
procedure to reconstruct the resistivity distribution consists of 
minimizing a quadratic cost function that emphasizes the sum 
of squared differences between measured and modeled data. 
Because in most cases the relationship between the property 
distribution function and the modeled data is nonlinear, the 
minimization is performed with a nonlinear search technique 
constructed by way of choosing a suitable number of iterations 
which eventually trace the road toward an extreme value of 
the cost function. The way this search is performed is usually 
a compromise between efficiency of the computations and 
stability of the method. A most common approach is referred 
to as the Gauss-Newton method, in which only first-order 
variations of the modeled data with respect to a variation in 
model parameters, the Jacobian or sensitivity matrix, is 
computed at each iteration. Ill-conditioning, however, 
degrades the performance of the Gauss-Newton method for 
data contaminated with measurement error.  

The sensitivity matrix is a complicated function of electric 
current, voltage and the unknown resistivity distribution. 
Improving the conditioning of the matrix by choosing a 
measurement method for the resistivity distribution is very 
difficult task since no explicit relationship can be seen. As an 
alternative, the regularization method is usually used to 
improve its conditioning [5]. The performance of the 
regularization method is closely related to the smoothing 
coefficient. A large coefficient distorts the information, while 
a small one has little effect. 

In this paper, we present truncated least squares (TLS) 
approach for the ERT image reconstruction of subspace object. 
We begin our discussion with a review of finite element 
method (FEM) to solve 2D dc resistivity problems. The 
forward modeling is used for predicting apparent resistivities, 
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which would be obtained on the surface of the sample. We 
then describe our inversion algorithm to analyze ERT 
measurements. Results of numerical experiments in ERT 
solved by the TLS approach is presented and compared to that 
obtained by the Gauss-Newton method. Finally, we discuss 
the performance of this approach through inverting synthetic 
data.  

 
2. IMAGE RECONSTRUCTION USING 

ELECTRICAL RESISTANCE TOMOGRAPHY 
 

The numerical algorithm used to convert the electrical 
measurements at the boundary to a resistivity distribution is 
described here. The algorithm consists of iteratively solving 
the forward problem and updating the resistivity distribution 
as dictated by the formulation of the inverse problem. The 
forward problem of ERT calculates boundary potentials with 
the given electrical resistivity distribution, and the inverse 
problem of EIT takes potential measurements at the boundary 
to update the resistivity distribution. 

 
2 .1 The forward problem 

The application of FEM to a 2D dc resistivity problem is 
thoroughly discussed in Tang and Yang [6]. Its main 
advantage as compared with other numerical methods is that 
complicated geometries, general boundary conditions, and 
spatially variable or non-linear material properties can be 
handled relatively easily. Furthermore, it does not suffer from 
a singularity problem at the source point in resistivity 
modeling [7], as the source singularity is effectively smoothed 
out by minimizing an integral-formed functional. For 
completeness, the method is briefly outlined here. The partial 
differential equation governing the behavior of electric 
potential is described by Poisson's equation: 

 
1( ) suρ−−∇ ⋅ ∇ = ∇ ⋅ J        (1) 

 
where ρ  is the electrical resistivity ,  is the 
potential (V), and 

( m)Ω u

sJ  the impressed current source (A). The 
computation of the potential  for the given resistivity 
distribution 

( , )u x y
( , )x yρ  and boundary condition is called the 

forward problem. The numerical solution for the forward 
problem can be obtained using the FEM. In the FEM, the 
object area is discretized into small elements having a node at 
each corner. It is assumed that the resistivity distribution is 
constant within an element. The potential at each node is 
calculated by discretizing (1) into  

 
c cKU I=        (2) 

 
where  is the vector of voltages at the FEM nodes and the 
electrodes,  the vector of injected current patterns and the 

matrix 

cU

cI
K  is a functions of the unknown resistivities. 

 
2.2 The inverse problem 

The inverse problem, also known as the image 
reconstruction, consists in reconstructing the resistivity 
distribution ( , )x yρ  from potential differences measured on 
the boundary of the object. Ideally, knowing the potential on 
the whole boundary makes the correspondence between the 

resistivity distribution and the potential biunique. The 
relatively simple situation depicted so far does not hold 
exactly in the real world. The methods used for solving the 
ERT problem search for an approximate solution, i.e., for a 
resistivity distribution minimizing some sort of residual 
involving the measured and calculated potential values. From 
a mathematical point of view, the ERT inverse problem 
consists in finding the coordinates of a point in a 
M -dimensional hyperspace, where M  is the number of 
discrete elements whose union constitutes the tomographic 
section under consideration. In the past, several ERT image 
reconstruction algorithms for the current injection method 
have been developed by various authors. To reconstruct the 
resistivity distribution inside the object, we have to solve the 
nonlinear ill-posed inverse problem. Regularization techniques 
are needed to weaken the ill-posedness and to obtain stable 
solutions. 

A nonlinear inverse problem is generally solved by 
iteratively minimizing the discrepancy between data  and 
the model response

d
( )f ρ , normalized by the standard 

deviations iε  of the data 
 

2
2 *
2

( ) ( ( )
dn

i i
d d

i i

d f D d fρφ ρ
ε

⎛ ⎞− φ= = − =⎜ ⎟
⎝ ⎠

∑    (3) 

 
where 1diag( )iD ε −= . Multi-dimensional problems are 
generally ill-posed considering data errors. Therefore, one has 
to introduce regularizing constraints like smoothness [8] or 
a-priori-information [9]. This can be accomplished by 
additionally minimizing a semi-norm 0(C )ρ ρ− , weighted 
by a regularization parameter λ  

 

( )( ) ( )
2 2

0 22d D d f Cρλ ρ λ ρΦ = Φ + Φ = − + − ρ    (4) 

 
The matrix  represents the expectations to the model, e.g., 
smoothness constraints. 

C
0ρ  is the reference or a-priori model. 

The application of the Gauss-Newton method leads to an 
iterative scheme 1k k kρ ρ ρ+ = + Δ  solving the regularized 
normal equations 

 

( )( )
( ) ( )( ) ( )0

T T
k

T T
k k

DS DS C C

DS D d f C C

λ ρ

ρ λ ρ ρ

+ ⋅ Δ

= − − −
    (5) 

 
Note that for a local regularization scheme effecting the 

model update ρΔ  instead of the model ρ  the latter term 
vanishes. The Jacobian or sensitivity matrix  contains the 
partial derivatives of the model response with respect to the 
model parameters 

S

 
( )
( )
i

ij
j

f
S

ρ
ρ

∂
=
∂

                    (6) 

 
The Jacobian matrix M NS ×∈ℜ  is a full matrix, whereas the 
matrices N ND ×∈ℜ  and M MC ×∈ℜ  are generally sparse. 
The vectors have the dimensions Mρ ∈ℜ  and , Nd f ∈ℜ . 

With , the equation (5) can be written using Ŝ DS=
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generalized inverse matrices  and  †Ŝ †C

 
( ) († †

0
ˆ ( )k kS D d f C C )kρ ρ ρΔ = − − − ρ

T

      (7) 
 

where and . 

Furthermore, note that . 

† 1ˆ( )
T TTS S S C C Sλ −= + † 1ˆ ˆ( )T TC S S C C Cλ λ −= +

ˆT TS S C C I+ =
The data are superposed by the response of the true model 

trueρ  and the noise  n
 

( )trued f nρ= +                 (8) 
 
Assuming in the  iteration the model thk kρ  is already close 
to the true model, a linearized Taylor expansion of ( )kf ρ  
yields 
 

( ) ( )k true kd f S nρ ρ ρ= + − +            (9) 
 
By insertion of ( )kd f ρ−  from equation (9) into equation 

(7), we obtain for 1est kρ ρ +=  
 

( )
† †

0

†
0

ˆ ˆ ˆ( ) ( )
ˆ     

est k true k k

M M
true

S S C C S Dn

R I R S Dn

ρ ρ ρ ρ ρ ρ

ρ ρ

= + − − − +

= − − +

†

 (10) 

 
The model estimate estρ  is constructed by the true model 

and the starting model and contaminated by noise effects. The 
matrix  combining the procedures of measurement 
and inversion is called resolution matrix. It serves as a kernel 
function transferring the reality into our model estimate and 
can be calculated using the generalized singular value 
decomposition [11]. Alternatively, the model resolution can be 
approximated by conjugate gradient techniques [12]. The 
operation of ERT algorithm is described in the flowchart of 
Fig. 1. 

†ˆ ˆMR S= S

 

 
Fig. 1 Flowchart of ERT algorithm 

 
 

2.3 The truncated least squares algorithm
In every iteration step , the linearized subproblem (5) to 

be solved reads 
k

 

( )( )
( ) ( )( ) ( ){ }0

T T
k

T T
k k

DS DS C C

DS D d f C C

λ ρ

ρ λ ρ ρ

+ ⋅ Δ

= − − −
 

 
Note that for local regularization schemes the term within 
{ } vanishes. The solution kρΔ  depends on the matrices 

 and the vectors , ,S D C ( )k d f kρ ρΔ = −  and 

0k kδρ ρ ρ= − . The equation can be interpreted as solution of 

k kAx DS D d bρ= Δ = Δ =  in a weighted least squares sense. 
In the following equation solvers are presented solving 
Ax b=  for x  in least squares senses. 

For small-scale systems the normal equations can be solved 
by matrix inversion of the left hand side matrix, which is 
always possible for , by appropriate methods like 
Gaussian elimination or QR decomposition. In 
multidimensional inversion, the number of model parameter 
and data are quite large, which prohibits the use of direct 
inversion from both computer time and memory usage point of 
view. Hence, an approximate solution is sought using iterative 
methods.  

0λ >

The conjugate gradient method derived by Hestenes and 
Stiefel [12] is widely used for iteratively solving large-scale 
systems of equations Ax b= . Since in every iteration only one 
matrix vector product has to be calculated, it is primarily used 
for sparse A  as arising in the discretization of partial 
differential equations. However, conjugate gradients are not 
restricted to sparse systems and can also be applied to the 
normal equations  

Low-frequency components of the solution tend to 
converge faster than high-frequency parts in Krylov subspace 
methods. This can be used for an implicit regularization 
algorithm called truncated least squares (TLS) algorithm [13]. 
Assume a Marquardt type of regularization resulting in the 
damped normal equations 

 
( ) {T T T T T T

kA D DA C C x A D Db C C }λ λ δρ+ = −     (11) 
 

Let  be the residual of the basis equation z ( )z D Ax b= −  
and  denote the residual of the equation to be 
solved . Then, 
the solution of equation (11) is described in the following TLS 
algorithm. 

r
( )T T T T Tr A D D Ax b C Cx A z C Cxλ λ= − − = −

 
The TLS algorithm 

 

( )0 0

0 0 0
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1
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3. COMUTER SIMULATION 
 

The proposed TLS algorithm has been tested by comparing 
its results for numerical simulations with those obtained by 
Gauss-Newton method. Fig. 2 shows the synthetic model 
investigated in this paper. It is equally discretized in x  from 
-1 to 42m and in  from 0 to 6m in block sizes of 1m×1m 
and consists of bodies with resistivities of 50 and 200

y
mΩ  

within a homogeneous background of 100 . Model 
parameters and data are the logarithms of the cell resistivities 
and the apparent resistivities, respectively. Table 1 shows the 
electrode arrangements investigated. A Wenner data set is 
simulated resulting in 273 single data. 

mΩ

 

 
Fig. 2. Model parameterization and synthetic model 

consisting of two bodies of 50 or 200mΩ mΩ in a 
homogeneous half-space of 100 . mΩ

 
Table 1. Definition of data sets  
 

Variable Value 
Electrode Arrangement Wenner(CCPP) 
Number of electrodes 41 

Position of first electrode -1 m 
Electrode spacing 1 m 

Separation n 6 
 
For a Wenner data set, the TLS and two Gauss-Newton 

algorithms are compared. Fig. 3 shows the inversion results of 
the numerical simulation for an assumed 3% noise data and a 
1mV voltage resolution at 100mV current. The two 
Gauss-Newton schemes with fixed regularization ( 30λ = ) 
and L-curve produce noise artifacts from the third term of the 
right hand side of equation (10). The inversion result using 
TLS algorithm yield superior resolution quality and matches 
the synthetic model very well near boundaries. 

 

 
(a) Gauss Newton with fixed regularization 

 

 
(b) Gauss Newton with L-curve 

 

 
(c) Truncated LS 

 
Fig. 3. Inversion results for TLS and two Gauss-Newton 

schemes using Wenner data set. 
 
 

4. CONCLUSION 
 

In this paper, an ERT image reconstruction method based 
on TLS approach was presented to improve the spatial 
resolution. A technique based on TLS algorithm was 
developed for the solution of the ERT inverse problem and 
yield superior result. The crucial point in nonlinear inversion 
is the choice of the regularization parameter, which strongly 
influences resolution properties and thus has to be chosen 
carefully. Furthermore, the exploitation of a priori knowledge 
will produce very good reconstructions. 
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