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Abstract: Study in this paper concerns the optimal H2 integral servo problems for linear crane model systems via the constraints of 
the derivatives of state variables added to the standard constraints. It is shown in the paper that the derivative state constrained 
optimal H2 integral servo problems can be reduced to the standard optimal H2 control problem. The main subject of the paper is to 
apply the results of derivative state constrained H2 integral servo theorem in crane system. The effect of our proposed controller 
with respect to mitigate an under damping for crane model system is also verified. 
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1. INTRODUCTION 
 

The problem of how to control an under damping response 
of controlled system has been one of the fundamental problem 
in practical control engineering. The optimal servo control 
method minimizing a given performance index is known as a 
method for tracking desired position of trolley of crane system 
and stabilizing swing of its load. However, it is difficult to 
select the weighting matrices of performance index to mitigate 
an under damping response of swing of crane system. The 
integral servo problem is initiated by H. W. Smith and E. J. 
Davison [1], in which they proposed dual approaches, 
prototype affine and differential transformations, and gave 
some suggestions on measurement feedback schemes.  
However, successive researches are restricted only on the 
affine transformation approach that introduces integrators 
deductively and employs exclusively the state feedback [2-4]. 
The optimal H2 integral control yields a zero steady-state 
tracking error for a disturbance which equals to both the 
dimension of the disturbance input and the dimension of the 
reference output. The regulator problem is formulated as the 
optimal control for oscillatory system such as minimizing a 
performance criterion involving time derivatives of state 
vector as well as usual system two-norm [5-6]. 

 
where x(t), w(t), u(t) and y(t) denote the state vector, the step 
disturbance vector, the input vector and the output vector, 
respectively.  Let r(t) denote the reference step vector.  For 
the error vector e(t), its integral xI(t) are defined as follow: 
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In oder to suppress unwanted oscillations in servo problem, 

the derivative state constraint is introduced as in the following 
equations: 
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In this paper, we derive the optimal H2 integral servo 

controller which stabilizes an oscillatory system such that the 
optimal control law is more effective to control an under 
damping steady-state tracking error by H2 control framework.  
The main subject of the paper is to apply the results of 
derivative state constrained H2 integral servo theorem in the 
crane system. The verification of the effect of our proposed 
controller with respect to mitigate an under damping for crane 
model system is also shown in the paper. 
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2. INTEGRAL SERVO PROBLEMS 2H

2.1  Problem Statement 
Given the controlled plant dynamics: 
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where 
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This system constitutes a singular problem. From FI and 

FC problems, the augmented generalized plant reduces to the 
following nonsingular plant;  

where ∑ = 2,1, ii  are the diagonal singular value matrices. 
Using the results obtained above, input and output vectors and 
accordingly the generalized plant are transformed as follows. 
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ii) Variable transformation 

The generalized plant can be obtained by using the 
following variable transformations defined by 
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)()(ˆ 1 tzUtz T=                                   (15) w(t) =wom(t), where m(t) stands for the unit step function, 
and the disturbance is taken in the sense of a hyperfunction or 
generalized function, and where 
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Substituting Eq. (14) through Eq. (17) into the Eq. (7), 
then the generalized plant is obtained as 
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where the coefficient matrices are given as follows: 
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The integral servo controller is to be designed by deriving 
the H2 controller to the above plant (7). 
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1112112  2.2  Solution 
The solution to the derivative state constrained H2 optimal 

control defined above is given by the loop shifting procedure.  
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Loop shifting  
i) Singular value decomposition The generalized plant is now reduced to the standard form 

of the H2 control problem. Suppose that the transformed 
generalized plant parameter matrices (19) satisfy the following 
relations: 

There always exist unitary matrices  for 

the singular value decomposition of  and D ;  

, , 1,2i iU V i =

2112D
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it is able to construct the following optimal solution to the 
generalized plant (18); 
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2.3 Main Results 

The theorem for the derivative state constrained H2 
integral servo problem is given as follows; 
 
Theorem (Derivative State Constrained Optimal H2 Integral 
Servo.) 

The derivative state constrained H2 integral servo 
controller for the controlled plant (24) is given as 
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Hamiltonian Matrices 

Under the above assumptions, the optimal H2 solution to 
the transformed generalized plant (18) is given as follows; 

A couple of Hamiltonian matrices are constituted as 
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Then, it is guaranteed that the solutions exist, which make  
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the horizontal displacement of the trolley at time t,
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)(tθ  
denotes the angular rotation of the pendulum at time t and L 
represents the distance of the rope. The linearized state 
equation is given by 
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Proof : The proof is neglected here. 
 

 3. ILLUSTRATIVE EXAMPLE 
The numerical values of M, m, L and g used in the numerical 
crane model are shown in Table 1. Consider the crane system shown in Fig.1 as the system to 

be controlled.  Symbols M, m, L and g represent the mass of 
trolley, the mass of load, the rope length and gravitational 
acceleration respectively. 

 
Table 1 Numerical values of the crane system. 

M  
(kg)  

m  
(kg)  

L  
(m)  

g  
( ) 2m/s

120  12  1.6  9.8  

 

θ

X

M

m

L

 

 
The designing parameters in the generalized plant 1,B 12 ,D  

1,C 11D  and 12D  are chosen as: 
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Fig.1 Crane system. 

 
        The state dynamic equation of the crane system can be 

represented by  

11
ni ni ni ni niD diag e e e e e =   

    (32)  
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    ( ) ( )
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dt

y t h x
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where 
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In order to be recovered from the slow time response, the 

prescribed degree of stability , which was proposed 
by B.D.O Anderson and J. B. Moore [7], is employed. Figure 
2 shows variation of the closed-loop poles of the crane system 
for the parameters varied from  to 

0 5.α =

ni = −6 1ni = −
ni

. It 
verifies that the smaller value of the parameter  is, the 
smaller the imaginary part of the closed-loop poles become. 
Figure 3 and Figure 4 show the responses of the crane system 
controlled by H2 integral servo controller with the initial state 
x(0) = [0  0  -0.25 0]T. Note that the under damping of the 
angular rotation suppressed within 5 seconds. 
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Fig.4 Closed-loop responses with initial angular rotation 
rad. θ(0) = -0.25

 
4. CONCLUSION 

The derivative state constrained H2 integral servo controller 
for oscillatory system has been proposed in this paper. It has 
been shown that the parameter ni could reduce the imaginary 
part of closed-loop poles than a popular parameter qi in term 
of performance cost as H2 optimization in the general 
framework. It is recognized that the servo problem can be 
applied to the systems whose reference inputs as well as 
disturbances are all given by step functions. It has been shown 
in an illustrative example that the proposed schemes has 
applied to mitigate the under damping for crane model system.  
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