
 
1. INTRODUCTION 

 
With advances in the robotics technology related to 

formation control of multiple robots, formation studies have 
advantages in efficiency, fault-tolerance, costs per robot, and 
generality comparing with one high-performance robot. They 
are expected to apply to a variety of areas, such as mine 
exploration, load carriage, scout, security, and rescue. In the 
formation control of multiple autonomous mobile robots, 
various researches mainly focus on achieving the specific 
formation and keeping the formation while moving in the task 
environment ([7] ~ [11]). Balch and Arkin [10] studied 
formation and navigation problems in multi-robot system 
based on the behavior-based control paradigm. Fredslund and 
Mataric studied the problem of achieving global behavior in 
group of distributed robot [11]. Moreover, Parker [9] 
developed the on-line distributed control strategies in order to 
accomplish global tasks. There are many applications for 
studying this problem using a distributed control method in 
cooperative multiple mobile robots. Unfortunately, only few 
researches address it from a computational standpoint which 
means that much remains to be done to develop its theoretical 
foundation such as [1],[4], and [6]. In this paper, we study the 
distributed coordination of a set of synchronous, anonymous, 
memoryless mobile robots that can freely move on a 
two-dimensional plane but are unable to communicate 
directly.   
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Fig. 1   Application Example 

 
In this paper, we consider the problem of managing a 

barricade line: a group of robots are required to safely lead a 
crowd of demonstrators parading on the street in order to 
protect them from car traffic as shown Fig.1. For example, the 
barricade robots are required to form and maintain a barricade 
line. The barricade robots look like lively moving barricade 
line. Their direct task is to completely defend against 
dangerous articles according to the parading crowd. In 
particular, the robots must adapt their formation according to 
place and time because the crowd is changing both in length 

and velocity. In other words, this application is the robustly 
cooperative barricade problem of multiple mobile robots for 
moving and a variable-length target. In summary, the 
objective of this problem is to maintain a barricade line using 
multiple barricade robots while keeping pace with the variable 
length crowd.  

We often encounter this kind of situation as real world 
application. For example, body guards have to protect their 
employer from an accident situation (e.g., flocking problem 
[5] – given set of n robots },,,{ 21 nrrr L , the robots required to 
keep a given shape while moving). However, our main 
motivation for the flocking problem is a different example 
within the framework for a velocity matching of parading 
individuals as a crowd according to a variable- shaped target. 
The proposed application problem is to maintain the virtual 
defense line by a group of barricade robots against a crowd of 
demonstrators. Our application is similar to sheepdogs that 
safely conduct sheep to a more plentiful plain, under direction 
of a shepherd.  

The main contribution of this paper is to propose a 
distributed algorithm by which a group of barricade robots 
maintain a robustly cooperative barricade line for a moving 
and a variable-length target. The algorithm forms a defense 
line with that of the crowd. Moreover, the algorithm does not 
require robots to memorize past actions and hence it is 
self-stabilizing [12]. An algorithm is said to be self-stabilizing 
if, starting from any arbitrary state, it always converges toward 
a desired behavior. In our case, this is ensured under the 
assumptions that no two robots have the same initial position.  

Cooperative robotics still lacks the rigorous theoretical 
foundation developed in other fields, such as distributed 
computing and concurrent systems. A few researches address 
the problem from a computational standpoint. Defago [2] 
provided a survey of researches about cooperative mobile 
robotics to represent the next logical step beyond mobile 
computing, namely cooperative robotics and nanorobotics. In 
particular, he proposed to address the problem in a way similar 
to what was done in the context of concurrent and distributed 
system. Among recurring problems found in literature on 
cooperative mobile robotics, the gathering problem is the one 
that has been studied most extensively. Suzuki and Yamashita 
[3~4] proposed an algorithm to deterministically gather robots 
with unlimited visibility. Prencipe [6] studied similar issues 
for the gathering problem and proposed the CORDA model 
with weaker assumptions on scheduling but with the ability of 
detecting multiplicity. On the problem of geometric pattern 
formation, Suzuki and Yamashita [3] studied the formation of 
geometric patterns based on the proposed algorithm in the 
gathering problem. Based on the same model, Defago and 
Konagaya [1] studied a self-stabilizing algorithm for the circle 
formation problem. Next, Gervasi and Prencipe [5] expressed 
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the flocking problem in a leader-followers model. Their 
solutions of flocking are very useful primitive for larger task 
such as box pushing and cooperative manipulation. Recently, 
Pereira [8] proposed a general framework for motion planning 
of cooperative mobile robots. 

The remainder of the paper is organized as follows. Section 
2 presents the system model of the barricade robots and the 
crowd. In Section 3, the definitions of the problem and the 
expressed notations are explained. And we decompose into 
two sub-problems: forming the barricade line and keeping 
pace with the crowd. An intuition for the algorithm and its 
description are given in Section 4. In Section 5, we prove the 
correctness of the algorithm. Finally, Section 6 concludes the 
paper and presents future directions. 

 
2. SYSTEM MODELS 

   
In a task environment, there are two kinds of system models 

such as autonomous mobile barricade robots and an 
asynchronous crowd. The crowd independently acts from the 
other robots. About the crowd, we assume that no person 
secedes from the parading group and rushes at the robots 
among them. If, however, finding out a vulnerable point or 
area where a relatively long interval arises from an unequal 
distance between robots, the crowd intends to go out into the 
driveway through the point. The crowd is modeled as a 
rectangular type without distinction of the body as like a 
landmark or a marked point. Its shape is simple rectangular 
form which is varied its length according to moving (i.e., 
worm-like motion). The length’s direction of the rectangle 
indicates its movement direction. However, the crowd merely 
moves forward in this direction. Namely, there exists only one 
direction for its motion. The pace of the crowd is defined as 
movement velocity varying.  

The other system model considers a collection of 
anonymous barricade robots evolving synchronously, without 
common senses such as origin, direction, and unit distance. 
Each robot ir  is modeled as a point with computational 
capabilities without computation delays. Because robots are 
equipped with unlimited sensors, each robot are able to 
observe the behaviors of all other robots and the crowd with 
respect to its local yx − coordinate systems. The local view of 
a robot includes a local Cartesian coordinate system having an 
origin, a unit distance, and the directions of two coordinate 
axes with their orientation identified as the positive (+) and 
negative (-) sides of the axes. In other words, there is no 
agreement on their coordinate systems among the robots. The 
robots have omni-directional wheel to enable to freely move 
on the 2-dimensional plan and never collide. Moreover, two or 
more robots may not simultaneously occupy the same physical 
location. During the computation, each robot ir is anonymous 
in the sense that they are unable to uniquely identify 
themselves, neither with a unique identification number nor 
with some external distinctive mark. All robots execute the 
same algorithm and thus have no way to generate a unique 
identity for them. Besides, there are no explicit direct means 
of communication; hence the only way they have to acquire 
information is by observing behaviors of all others robots and 
the crowd.  

There exist barricade robots and the crowd on the 
2-dimensional space simultaneously. As illustrated Fig.2, 
robots that are located on the plan can find itself in either one 
of three types of situations as follows; first situation –          

Fig. 2   Initial Configurations 
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 Fig. 3   Synchronous Time 
 
arbitrarily distributed, second situation – forming a barricade 
line without keeping pace, and third situation – forming 
barricade line. For the first situation, we assume that there 
exist barricade robots within the boundary of the maximum 
distance to be able to reach at less than one cycle of their 
activations. Moreover, barricade robots don’t exist on the right 
side of the crowd because there are many buildings such stores. 
It is further assumed that initially all robots occupy a distinct 
position. 

Time for the crowd is asynchronous and unpredictable. 
During which the crowd becomes active, it moves 
independently. Conversely, when the crowd is inactive, there 
is no action. Moreover, time is represented as an infinite 
sequence of time instants L,,, 210 ttt for all robots. At each 
time instant, each robot computes a new position using a given 
algorithm, which takes as input the sensed positions of the 
crowd and the robots, and moves toward its target position. 
In our proposed model, robots are synchronized because all of 
them become active at every time instant. The activation of 
robots is determined by an activation schedule that is 
composed as the cycle of SENSING – COMPUTATION – 
MOTION. (See Fig.3 – Synchronous time for barricade 
robots) 

(1) SENSING – The robot observes the task environment by 
its sensor detecting the positions of other robots and the 
movement points of moving target. And then the robot’s 
sensor will return the detected snapshot with respect to its 
local coordinate system. The result, each robots viewed as a 
point and the moving target as a rectangle, of the SENSING 
is just the pair of their coordinates and the set of movement 
positions.  
(2) COMPUTATION – After having observed, the robot 
performs a local computation according to its algorithm. 
Here, the local computation is based on only current 
locations of sensed robots and the crowd. The result of the 
computation is a destination point.  
(3) MOTION – After the robot executes the algorithm, if a 
target position is equal to the current location, the robot stay 
still. Otherwise, the robot moves toward a computed 
destination. The barricade robots synchronously go at 
computed positions for moving of the crowd with individual 
velocities. After the completion of the motion time ( mτ ), 
robots go back to the SENSING state.  
As shown Fig.3, the time for the robot to complete a 

SENSING-COMPUTATION-MOTION cycle is neither 
infinite nor extremely small. The elapsed time in the 
SENSING and the COMPUTATION is negligible compared 
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to the time required in the MOTION. The life of a robot 
consists in repeating an endless cycle of states (1) – (3). 

Based on our proposed model, the new algorithm consists 
of a functionϕ  that is executed by a robot ir  at every time 
instant. The arguments of ϕ  consist of the current position 
for the robot and a set of positions for all robots at the 
corresponding time instant. All positions are represented in 
terms of the local coordinate system of ir . The returned value 
byϕ is the new position and the velocity for ir which must be 
within one distance unit of the previous position, as measured 
by ir ’s coordinate system. For simplicity, it is assumed that 
obtaining information about the system model, computing the 
new position and velocity, and moving toward it are 
instantaneous. Note that arguments toϕ include only current 
information and thus the algorithm can use no knowledge of 
the past. The robots are oblivious because they are unable to 
remember any past actions or sensing. As a result of [3], it can 
be discussed that the algorithm definedϕ  is self-stabilizing. 
However, this is not necessarily true, as this largely depends 
on the exact definition of self-stabilization. 
        

3. PROBLEM DEFINITIONS  
   

In this section, we formally define collective problems of 
the barricade line. Based on this model, we analyze the 
application problem that consists in having a group of robots 
form a safe defense line to protect from car traffic a crowd of 
demonstrators parading on the street. For the sake of 
robustness, we privilege fully decentralized solutions to the 
problem. Thus, in this presentation, we give a self-stabilizing 
distributed algorithm to address the problem. 
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Fig. 4   Definitions of Crowd & Barricade Line 

 
3.1 Definitions 

Given a robot ir , )(tpi denotes its position according to 
global yx − coordination systems at time t , )0(ip is its initial 
position at time 0t . A configuration }1)({)( nitptP i ≤≤=  at 
time t  denotes a set of distinct points for a group of n robots 

nrr ,,1 L  with distinct positions and arbitrarily located. 
Configurations are used to model the positions of barricade 
robots and to represent target points that organize a desired 
formation. A formation  }1)1({)( nitptL ib ≤≤+=  is a target 
configuration with a uniform interval. We call the formation 
the barricade line of the group of barricade robots. We suppose 
that the barricade line is expressed in a coordinate system 

having the crowd as origin and oriented according to the 
movement direction of the crowd.  

When observed a crowd with the rectangular body as like 
Fig.4, we formalize the crowd line ( CL ) that the length’s 
direction of the rectangular body indicates the movement 
direction. In detail, the line is measured from one vertex to the 
other vertex along the longest line adjacent to a driveway as 
illustrated Fig.4. The center point ( CC ) of the crowd is the 
midpoint of the CL . We assume that the CC is expressed as 
common origin in the global coordinate system. In addition, 
the global coordination is agreed on as follows; First, 
GY (Y-axis of common coordination) passed through the CC , 
is parallel for the CL , and indicates that (+) positive direction 
of the common Y-axis is equal to the movement direction of 
the crowd. Second, GX (X-axis of common coordination) is 
defined as passing through the CC  and vertical direction for 
the GY , whose (+) positive direction turns a counterclockwise 
rotation. As seen the Fig.4, the WC (width of the crowd) is 
perpendicular to the CL in the rectangular body. More 
specially, this WC is defined as unit distance of the common 
coordinate system. Using CC , GXGY − coordination, and WC , 
all robots may reach an agreement on common origin, 
common direction, and the shared unit of measure because 
they are able to know when they take a snapshot of the 
positions with respect to their own local coordination. 

Where does the barricade line ( bL ) prefer to be located in 
order to maintain the barricade line for the parading crowd? In 
detail, how long distance from the crowd is favorably located 
in the barricade line? As shown Fig.4, the bL  is located in the 
distance ( bcd ) which is equals to WC , runs parallel with GY , 
and vertically passes through a point cb on the GX . To begin 
with, we define that WC and the distance bcd  
between CC and the point cb  are the same distance. At the 
point cb , the length of the barricade line is bisected. Next, let 
the stable length of the barricade line for maximum parading 
distance per one activation schedule be 

WCCb CtfXXtftf 2)()()( max
2

max
1 +=∆+∆+=  where let bf and 

Cf be the length of a barricade line and the length of crowd 
line, respectively. In addition, WC is equal to max

1X∆ or 
max
2X∆ (∵ max

2
max
1 XXCW ∆=∆= ). Here, we additionally 

define a condition for )(tfC  (the length of the crowd line) if 
∑ ≤ )()( tftd Cu  where there are two assumptions related to 
the )(tfC ; first, however much the barricade line may reduce, 
the length of the crowd cannot become a point. Second, the 
barricade line is limited to finite length. Moreover, the 
endpoints of the barricade line indicate the point 1b located in 
(+) direction of GY and the point 2b in (-) direction of GY , 
respectively. More specially, let )(tdu  (the uniform distance) 
at time t be the distance between ip and 1−ip , when the 
barricade robots are individually positioned on the barricade 
line. In order to defend the crowd that moves on the street 
through a vulnerable area, the robots must maintain the 
barricade line with a uniform interval )(tdu . 
 
3.2 Conditions 

When the crowd parades on the street, two endpoints for 
movement of the crowd are modeled as 21, XX  of CL . 
Let max

1Xv and max
2Xv be the maximum velocities for 21, XX , and 

let bv be the velocity of a barricade robot. Let’s image the 
worst possible case related to 21, XX - The crowd is moving 
away from the barricade robots at the same time. In other 
words, the crowd must not be too fast otherwise; the barricade 
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robots will lag behind it and will not be able to maintain the 
barricade line. In order to be solved for the problem, the 
following velocity condition must be required:    
      

b
j

XX vvv min),max( max
2

max
1

< .              (1)      
      

Next, let 1X∆ and 2X∆ , which is moving distance per one 
activation time, be the displacement for 21, XX , and let mind be 
the minimum traveling distance for a robot. In order to 
maintain the barricade line, the elapsed time of a MOTION 
state in the robot’s activation schedule must not be too long. 
Otherwise, the crowd could travel away from barricade robots 
for the time instant between two consecutive SENSING states. 
In order to protect from the previous mentioned case, the 
following condition must be met:  
     

min
j

max
2

max
1 min)X,Xmax( dCW <<∆∆ .             (2) 

      
As the definition of Fig.3 in the Section 2, sτ , cτ , and mτ are 

sensing, computation, and motion time at each time instant, 
respectively. We assumed that the elapsed time of the 
SENSING and the COMPUTATION is negligible compared to 
the time required in the MOTION. The above condition is 
intuitive because we consider the duration of the MOTION at 
same time instant of all the robots. In detail, let t∆ be the time 
interval between it and 1−it . Using this condition, we formally 
define the time interval of synchronous time as follows: 
      

ttt iimcs ∆=−≅<< −1, τττ .                           (3) 
      
  For example, the velocity for the moving endpoint 1X is 
resolved into the displacement 1X∆ and the synchronous time 
instant. 
      

1

111
1

−−
∆

=
∆
∆

≅
∆

=
iim

X tt
X

t
XXv

τ
.                         (4) 

            
Analogously, the minimum movement distance of any 

barricade robot may be analyzed into 
      

tvttvvd b
j

iib
j

mb
j

∆×=−×=×= − min)(minmin 1min τ .         (5) 
      
3.3 Problem Definitions 
      

The problem addressed in this paper is the maintenance of 
the barricade line by a group of mobile robots. We define the 
barricade problem as follows:  
      
Problem 1 (BARRICADE PROBLEM)  
      

Let nrr L,1 be a group of barricade robots with distinct and 
arbitrarily distributed positions, let a crowd be a group of a 
parading demonstrators modeled as variable-length 
rectangular shape with movement velocities varying according 
to each time instant, and let )(tLb  be a barricade line given 
in input to nrr L,1 . The barricade robots are able to find out a 
solution for the BARRICADE PROBLEM if, starting at time 
instant 0t , 01 tt ≥∃ such that, 1tt ≥∀ the robots completely 
maintain the barricade line against the crowd. 

 
In the reminder of this paper, we decompose Problem 1 into 

two subproblems. The first subproblem (Problem 2) is a 
weaker version of Problem 1, wherein a barricade line is 
formed without keeping pace with a crowd. The second 
subproblem (Problem 3) consists in transforming a 
configuration, in which robots are uniformly arranged on a 
barricade line, into one where the robots are arranged 
uniformly according to a crowd of each length-varied shape 

with each time-varying movement velocities. 
 
Problem 2 (BARRICADE FORMATION PROBLEM) 
      

Let nrr L,1 be a group of barricade robots with distinct and 
arbitrarily distributed positions, let a crowd be a group of a 
parading demonstrators modeled as variable-length 
rectangular shape according to each time instant, and let 

)(tLb  be a barricade line given in input to nrr L,1 . The 
barricade robots are able to find out a solution for the 
BARRICADE FORMATION PROBLEM if, starting at time 
instant 0t , 01 tt ≥∃ such that, 1tt ≥∀ the robots completely form 
the barricade line against the crowd. 

 
Problem 3 (VELOCITY MATCHING PROBLEM) 
      

Let nrr L,1 be a group of barricade robots of distinct 
positions with a uniform interval on a barricade line, let the 
crowd be a group of a parading demonstrators modeled as 
variable-length rectangular shape with movement velocities 
varying according to each time instant, and let )(tLb be a 
barricade line given in input to nrr L,1 . The barricade robots 
are able to find out a solution for the VELOCITY 
MATCHING PROBLEM if, starting at time instant 0t , 

01 tt ≥∃ such that, 1tt ≥∀ the robots keep pace with the crowd. 
 

      
4. ALGORITHM DESCRIPTIONS 

 
Given an initial configuration where a collection of robots 

are arbitrarily distributed on the 2-dimensional plan, our 
proposed algorithm ensures that the system model migrates 
toward a configuration of robots that is a valid solution to the 
BARRICADE PROBLEM. This algorithm actually builds 
upon functions under hypothesis that the barricade robots (1) 
are oblivious in the sense that they are unable to recall past 
behaviors and observations, (2) share no common sense such 
as a common coordination and a unit distance, (3) are 
anonymous in the point of view that cannot be distinguished 
from each others, and (4) have no direction communication 
only through observing positions of other robots and 
movement positions of the crowd. Besides, the proposed 
algorithm is self-stabilizing because of starting from any 
arbitrary state always converges towards the barricade line. It 
takes an arbitrary configuration in which all robots have 
distinct positions and regardless of their activation, eventually 
brings the system toward a configuration in which all robots 
are uniformly distributed on the barricade line. Informally, the 
algorithm relies on the fact that the task environment observed 
by all robots in the same while they have their different own 
local coordination system. Moreover, the barricade line is 
unique and depends only on the relative velocities and the 
length of the crowd. Therefore, the algorithm makes sure that 
the barricade line remains unchanged and uses it as a 
configuration at each time instant. 

The intuition behind the algorithm is simple and we briefly 
describe it here (See Fig.5 and Algorithm 1.). Whenever all 
robots become active at each time instant, they consider their 
current positions as a configuration by new updated common 

GXGY − coordinate systems. (We explained agreement on 
common sense with respect to robots’ own local coordination 
in Section 3.) And then robots decide their rankings as sorting 
in increasing order by each position value with respect to 
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GY -axis and GX -axis, respectively. In particular, after the      
sorting, it is guaranteed that  
      

),(),,(,, jjjiiiji yxpyxppp ==∃∀   
if { })}(){()( jijijiji xxyyyypp <∧=∨<⇔<            (6) 
      
where ip and jp are points of ir and jr  in a configuration. 
The ranking m of the configuration it belongs to is computed, 
(i.e., the position that the current configuration occupies in the 
sorting.), by Sort ),( ⋅ip . Next, the m -th robots consider the 
crowd as their target, and compute a virtual barricade line 
according to states, which represent Cf , CC , and WC , of the 
crowd retrieved in the current SENSING state. Then, the 
robots know they are uniformly distributed to the end point 

2b by an interval of ud on the barricade line originated from a 
start point 1b . At this point, the positions returned by this 
execution are the next configuration, which indicates positions 
on the barricade line defined by )(tLb , that all robots will try to 
reach. After having computed the )(tLb , a robot find itself in 
either one of three of situations. First, the simplest situation 
occurs when a current configuration is exactly equal to )(tLb . 
In this case, the robots will stay still because the crowd 
doesn’t move. The second situation arises when robots exist 
on a )(tLb without keeping pace. Even though the 
conditions Wbc Cd = and ),( 1−= mm ppdistk (Here, the distance 
between  mp  and 1−mp  is considered as one or two direct 
neighbor(s) of a robot) is satisfied, the midpoints of 

)(tP and )(tLb doesn’t coincide. In this case, a robot estimates 
displacements of the crowd for an activation schedule as 
illustrated Algorithm 1 - ( ),( 111 pbdistX GY=∆ :  = the 
displacement of 1X = distance between endpoint 1b of )(tLb  
and a position of the highest ranking robot on the barricade 
line at each activation time). Therefore, all robots made to 
move toward the target points on the barricade line at the 
velocity mv . The third situation arises when robots are 
arbitrarily distributed. In this case, robots must form a 
barricade line before everything else. The robots go to target 
positions with maximum velocity max

bv . 
 

      
5. ALGORITHM CORRECTNESS 

      
Lemma 1.  Two or more robots do not simultaneously 

occupy the same location. 
      

PROOF.  If starting at time instant 0t , 01 tt ≥∃ such that, 
1tt ≥∀ , Two or more robots do not simultaneously occupy the 

same location. The proof is by induction. By assumption on 
the initial configurations that no two robots occupy the same 
location initially (Section 2), it is true that two or more robots 
have the distinct positions at 0t . Algorithm 1 gives all 
configurations where robots are located can be decided by 
ranking at time instant t . Therefore, if two or more robots 
have the distinct positions at some time instant, then they 
always have distinct positions afterward. □ 

 
Lemma 2.  An arbitrarily located robot kr moves toward 

a point that is located on a barricade line. 
      

PROOF.  Robots moves only at lines 19, 22, 24 of 
Algorithm 1. Let us consider each case for an arbitrary 
positioned robot. 
1. At line 19, kr  stays still, so it obvious does not move 

away from bL  
2. At line 22, kr  moves from the interior of the barricade line 

toward a point located on a barricade line. Therefore, kr  
actually exists on the only barricade line. 

3. At line 24, kr  moves to a point in its barricade line 
according to the decided ranking. Since a point always 
belongs to its barricade line according to the initial 
assumption, the new position must be within the boundary 
of the maximum distance to be able to reach at less than 
one cycle of activation. 

The robot kr  is unable to move away from the boundary of a 
barricade line in any of the three cases. □ 
 

Lemma 3.  All robots located on a barricade line always 
remain on the barricade line. 
      

PROOF.  If arbitrary robot jr on the barricade line at time 
t  is selected, jr exists on a barricade line for tt ≥′∀ . When a 
configuration including an arbitrary robot jr that exists only on 
a barricade line at time t , there are two cases to be 
considered.   
1. At line 18, This configuration is stationary and not 

removable from a barricade line because the crowd does not 
move. Namely, all robots must exactly keep the current 
configuration at time t′ . No robot moves away from the 
barricade line. 

2. At line 20, In this case, an arbitrary robot jr does not satisfy 
the condition )()( tLtP b= at time t . However, by the 
definition of the barricade line, the configuration included 
in an arbitrary robot jr  indicates a type of a barricade line 
slow than the crowd. So, all robots of this configuration 
move from a point located in the current line toward a new 
point in barricade line. No robot move away from the 
barricade line. □ 
 
Lemma 4.  If the crowd moves at any velocity, then the 

barricade robots keep pace with the crowd. 
      

PROOF.  Let a velocity of the crowd be
jXv . The proof is 

by induction, where the induction step directly follows from 
the mentioned condition b

i
XX vvv

jj
minmax <≤  and the 

definitions of each velocity for the crowd and the robots. 
Indeed, according to Lemma 2 and Lemma 3, no crowd is 
faster than the barricade robots.  □ 

 
Lemma 5.  If the crowd does not move, eventually the 

barricade line remains unchanged. 
      

PROOF.  This follows trivially from lemma 2 and lemma 
3.  □ 

 
      

6. CONCLUSION 
 

In this paper, we proposed the BARRICADE PROBLEM as 
the first step toward the application of recurrent problems 
found in the literature on the cooperative robotics. Our 
algorithm ensured that a group of mobile barricade robots will 
eventually form a safe defense line moving together with the 
crowd, and adapt its moving velocity to that crowd. We 
showed that the algorithm forms a barricade line and 
maintains its pace. In addition, our algorithm is decentralized  
in the sense that each robot need only know the position of 
neighboring robots and the crowd, but no explicit inter-robot 
communication or centralized control is required.  

We indeed intend to use this problem as a starting point for 
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studying the role and strengths of several different 
communication models. For instance, the algorithm presented 
in the Section 4 relies exclusively on the fact that robots can 
detect each others position, as is the case with GPS or RFID. It 
is now interesting to see whether replacing GPS or RFID with 
other communication models (e.g., ad hoc networking with 
directional antennas) still allows for solving the barricade line 
problem. However, this question is not addressed here and left 
for later studies. 
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.  
 Algorithm 1  Combining the parts – BARRICADE PROBLEM 

Input: npp L,1 are a group of positions for nrr ,,1 L retrieved in the current SENSING  
state. At the same time, Cf , CC , and WC represent the length of the crowd line, the center point  
of the crowd line, and the width for the crowd, respectively. 
Function ),( ibarricade pPϕ  

1:   Agreement_Common( Cf ) ; // common sense 
2:   For All ni ,,2,1 L=  Do 
3:   Sort ),( GYpi ; // selecting candidate with greatest GY -coord. 
4: If exactly one candidate of each ranking exists Then 
5:  m := ranking. // nm ,,1 L=  
6:     Else {Several candidates exist} 
7:  Sort ),( GYpi ; // Selecting candidate with greatestGY -coord., 
8:  Sort ),( GXpi ; // and then GX -coord.  
9:  m := ranking. 

10: End If 
11:  End For 
12:  Barricade_Line ),,( bcbc fbd ; // favorable location, center point, and length of )(tLb

13:  21 , bb :=Barricade_Line ),,( bcbc fbd ; // endpoints of barricade line 
14:  ud :=Barricade_Line ),,( bcbc fbd ; // uniform interval : Eq.(1) 
15:  )(tLb :=Next positions; // i.e., next configuration },,{)1()( 1 nb pptPtL L=+⇒
16:  // target positions at a distance from point 1b : Eq.(2) 
17:  // m -th set of target point mv : Eq.(3) 
18:   If The crowd doesn’t move  Then { )()( tLtP b= } 
19: No Action. // i.e., robot ir stay still 
20:   Else If robots exist on the bL without keeping pace Then 
21:    ),( 111 pbdistX GY=∆ and ),( 22 nGY pbdistX =∆ ; // displacements  
22:         Go to md with mv . // velocity of mr : : Eq.(4) 
23:    Else {Robots are arbitrarily distributed} 
24:  Go to target position. 
25:    End If 
26:    End If 

27:   //: Eq.(1) bu f
n

d ×
−

=
1

1
 

28: //: Eq.(2) ⎟
⎠

⎞
⎜
⎝

⎛ ×
−
−

− bGY f
n
mb

1
1

1  

29: //: Eq.(3) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ×

−
−

− bGYGX f
n
mbb

1
1, 11  

30: //: Eq.(4)
1
1

1 21 −
−

×+
−
−

×=
n
mv

n
mnvv XXm  

 
 
 

 

 
Fig. 5   Example of How the Algorithms Work 
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