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1. INTRODUCTION 
 

The identification methods based on correlation approach 
such as IV(Instrumental Variable) methods and PLR(Pseudo 
Linear Regression) methods have been studied intensively for 
several decades. The IV method originally can be applied to 
estimate the AR(Auto Regressive) part when we consider the 
ARMA model. On the IV methods, many variants and the 
properties such as consistency and accuracy were studied in 
[1]. To improve the parameter estimation accuracy, the 
over-determined recursive IV methods were suggested in [2-3]. 
More recently, a method for the identification of closed loop 
system was proposed in [4]. 

As another correlation approach, the PLR methods can be 
applied to estimate both the AR and MA(Moving Average) 
parts. The accuracy properties including asymptotic normality 
of a general PLR are studied in [5]. For the general PLR 
method and modified one, the local convergence analysis was 
done in [6]. 

In this paper, we propose a new variant of correlation 
approach for the estimation both the AR and MA parts of 
ARMA model. The key idea of this method is to find the 
estimate making the prediction error at current time become 
uncorrelated with the one at past time. This is because we call 
the proposed method as DWM(Direct Whitening Method). As 
the properties which are required in good parameter estimation 
methods, we prove the uniqueness, consistency, and 
asymptotic normality of the estimate acquired by DWM. Even 
if DWM is an extension of PLR, DWM requires nonlinear 
optimization differently from PLR. With some simulation 
results, the performance of DWM is verified for various 
systems. 

 
2. PRELIMINARY 

 
In this section, model structures and the general correlation 

approach are explained. Consider ARMA(p, q) model. 
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where  is AR part,  is MA part and  is true 
parameter vector. 

*θ

 The different definition of depends on what 
parameters are estimated by a method. We will use the 
notation  for the estimate of  and θ  for the 
candidate of . Let's assume that  and C  have 
zeros inside the unit circle respectively and, moreover, both 
has no common factors. The prediction error is defined as 

) )z(

.  is the estimate of  at the 

time . Since 

ty
 is a function of θ ,  ),( θε t  is 

used alternatively in this paper. 
The correlation approach is based on the idea that the 

prediction error should be independent of the past output. 
Therefore the parameter estimate by correlation approach is 
given by equation (1)[7]. 

 the solution the equation 

 (1) 

where is the number of measurements, ),( θζ t  is a 
function of past output and  is filtered prediction 
error. 

In standard PLR method, the  is 

[ ]Tqt−εL  

and . To solve the equation (1), least 
squares method can be used. Then the estimate of standard 
PLR is given by 

tyt ),( θζ  (2) 

Since the  may not satisfy that  and have 
zeros inside the unit circle. the projection into the unit circle is 
required. The projection algorithm can be a good method for 
this purpose[9]. 
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3. DWM AND ITS PROPERTIES 
 

In this section, DWM is presented and its properties are 
derived. At first, we will show that if we acquire the estimates 
making the prediction error at current time become 
uncorrelated with the one at past time, the estimate become the 
true parameter as the sample number goes to infinite. 

Now let's ),( θζ t  in equation (1) as 

[ ]Tqptptpttt −−−−−−= εεεεθζ LL 11),(  

And ),()),(( θεθεα tt =  like as in standard PLR. 
Then the estimate is given by 

=θ̂ the solution of (3) [ ]qpkkR N +== ,,1,0)( L

where  is defined as )(kRN

∑
=

−=
N

t
kttN N

kR
1

1:)( εε  

We note that  has the meaning of autocorrelation 
function of the prediction error. 
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Equation (3) is a nonlinear algebraic equation with respect 
to the parameter. In this case, the Newton-Rapson method [8] 
is used. Then the estimate is given by 
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where  is the parameter estimate at i'th iteration and  
is defined by  
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The estimates resulted by (4) may not have zeros inside the 
unit circle. We use the projection algorithm for this case. 

Now, let's investigate the properties of DWM. The 
properties include the uniqueness, consistency, and asymptotic 
normality. For further statements, let's define as the 

compact subset of 
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Before deriving the main properties, we need to derive the 

convergence of  to )(kRN )(kR . 
 

Proposition 3.1 
With the assumptions on true model and projection 

operation on the estimated model, 
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proof: 
We assumed e is white Gaussian noise, which implies 

that is i.i.d with zero mean and bounded fourth moment, 

and the model structure  is uniformly stable. 

Moreover,  is also a uniformly stable filter. 
These fulfills the assumptions of Lemma 8.4 in [7],  which 

give the result of this proposition. 
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The derivation of the uniqueness use the residue integral 

form in calculation of )(kR . From the relation 
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where ∫ means the residue integral. 

Following proposition shows that the estimate which make 
)(kR  is unique and is the true value. 

 
Proposition 3.2 

If the estimates satisfy )(kR =0 for , 
then 

qpk += ,,1 L

)()(ˆ zAzA =  and  )()(ˆ zCzC =
 
Proof: 
From lemma 1 in [10], 

  
is analytic in unit circle. 
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Since, , ,  and  have all zeros 
inside the unit circle and and  have no common 

factors, it is clear that   and . 
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From the convergence of  and the uniqueness of 

the estimate, the consistency is acquired as follows. 
)(kRN

 
Proposition 3.3 

If the estimates satisfy (3), then  
*ˆ θθ → , w. p. 1, as  ∞→N

 
proof: 
From the Proposition 3.1 and the compactness of , we 

get  
MD

TD→θ̂ , w. p. 1,  as  ∞→N
where 

{ }qpkkRDD MT +==∈= ,,1,0)(,| Lθθ  

From the uniqueness of the estimate, the element of  is 

only , which completes the proof. 
TD

*θ
 
Now let's investigate the asymptotic normality. The 

asymptotic normality indicate how fast the estimate error 
decays as the number of samples used in estimation increases. 

 
Proposition 3.4 

Let's define [ ]TqpRRR )()1(: += L

[ ]TN qpR )( +L

 

and .  Assume that NN RR )1(:=

[ ] */ θθθ =dRd exists and is nonsingular and that 
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[ ] 0* →=θθNREN  as .  And also 

assume that the estimates satisfy (3), then 

∞→N
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normal distribution with mean zero and covariance  as 
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5. CONCLUSION 
 

We proposed a new variant of correlation approach for 
ARMA model. It is based on the idea to find the estimate 
making the prediction error at current time become 
uncorrelated with the one at past time. As good properties, we 
proved the uniqueness, consistency, and asymptotic normality 
of the estimate. With some simulations, we showed that the 
proposed method give good estimates for various systems 
compared to the standard PLR method. 
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Proof:  
We showed  w. p. 1 as  at the 

Proposition 3.3. Moreover, by the projection of zeros of 
 and  into unit circle, the  is 

uniformly stable and, therefore, its derivative with respect to 

*ˆ θθ →

)(z
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 is also uniformly stable. These fulfill the assumptions of 
Theorem 9.2 in [7]. Therefore, we get the results of this 
proposition.  

 

 
From this proposition, we can say that  decays 

with covariance  under some conditions : 

*ˆ θθ −
NP /θ

] *θθ = exists and is nonsingular and that 

[ ] =θθ 0→*  as . ∞→N
 

 
 4. SIMULATION Fig. 1 The pole zero plot of the models chosen   
 In this section, the performance of DWM is verified through 

the simulation. For simulation, following three ARMA(2,2) 
models used in [6] are considered. 

 
Table 1 The estimation results 

 
parameters model method a1 a2 c1 c2 

true 0.9 0.95  1.25 0.75
proposed 0.92 0.97 1.26 0.77S1 
PLR 1.15 1.0 1.19 0.49
true 0.9 0.95 0.9 0.65
proposed 0.91 0.98 0.91 0.68S2 
PLR 1.11 1.0 1.08 0.69
true -1.5 0.7 -0.7 0.25
proposed -1.47 0.67 -0.67 0.25S3 
PLR -1.49 0.69 -0.69 0.25

Model S1: 

t zzyz 75.025.11()95.0 121 −−− ++=+  
Model S2: 

tt ezyz 65.09.01()95.0 121 −−− ++=+  
Model S3: 

t zzyz 25.07.01()7.0 121 −−−− +−=+  
The models selected represent various systems which have 
different characteristics each other. The pole zero plots of the 
models are shown in Fig. 1. Model S1 and S2 have pole and 
zeros near the unit circle and according to the [6], the standard 
PLR method does not give accurate estimates for these two 
models. The algorithms given by (3) for PLR and (4) for 
DWM are  applied to estimate the parameters. The obtained 
results are listed in Table 1. The standard PLR method does 
not converge for model S1 ~ S2 and converges closely to the 
true values for model S3, which coincide with the results in 
[6]. On the contrary DWM give the estimates close to true 
values for all models chosen. 
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