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Abstract:

We proposed a new variant of correlation approach for ARMA model. The proposed method is is intended to make

the current prediction error uncorrelated with the past one. In the investigation of the properties, the uniqueness, consistency and

asymptotic normality of the estimate are shown. Via simulation results, we show that the proposed method give good estimates for

various systems.
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1. INTRODUCTION

The identification methods based on correlation approach
such as IV(Instrumental Variable) methods and PLR(Pseudo
Linear Regression) methods have been studied intensively for
several decades. The IV method originally can be applied to
estimate the AR(Auto Regressive) part when we consider the
ARMA model. On the IV methods, many variants and the
properties such as consistency and accuracy were studied in
[1]. To improve the parameter estimation accuracy, the

over-determined recursive IV methods were suggested in [2-3].

More recently, a method for the identification of closed loop
system was proposed in [4].

As another correlation approach, the PLR methods can be
applied to estimate both the AR and MA(Moving Average)
parts. The accuracy properties including asymptotic normality
of a general PLR are studied in [5]. For the general PLR
method and modified one, the local convergence analysis was
done in [6].

In this paper, we propose a new variant of correlation
approach for the estimation both the AR and MA parts of
ARMA model. The key idea of this method is to find the
estimate making the prediction error at current time become
uncorrelated with the one at past time. This is because we call
the proposed method as DWM(Direct Whitening Method). As
the properties which are required in good parameter estimation
methods, we prove the uniqueness, consistency, and
asymptotic normality of the estimate acquired by DWM. Even
if DWM is an extension of PLR, DWM requires nonlinear
optimization differently from PLR. With some simulation
results, the performance of DWM is verified for various
systems.

2. PRELIMINAR
In this section, model structures and the general correlation
approach are explained. Consider ARMA(p, q) model.
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where @;’sand C;'s are the parameters, is the output,
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and €, is the white Gaussian noise with zero mean and

variance of O 2 . For later use, let's define
A(z)=l+az"' + - +a z~

(z)=l+cz' ++c z~
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(z) isMA partand @° is true

0 =|a
where A(z) is AR part,
parameter vector.

The different definition of @ depends on what
parameters are estimated by a method. We will use the

notation & for the estimate of H* and €@ for the
candidate of @ . Let's assume that A(z) and  (z) have

zeros inside the unit circle respectively and, moreover, both
has no common factors. The prediction error is defined as

£ at the

a ¢

A

is the estimate of

t t T -, ti-1,0 t

£(,0) is

time f—1. Since &, is a function of o,

used alternatively in this paper.

The correlation approach is based on the idea that the
prediction error should be independent of the past output.
Therefore the parameter estimate by correlation approach is
given by equation (1)[7].

b=
UZ £(1,0)a(e(1,0)) = 0}

the solution the equation

(M

where N is the number of measurements, ;(t,g) is a
function of past output and (&(¢,8)) is filtered prediction

error.
In standard PLR method, the {(,6) is

{(t,@) =[ t-1 t— gt— ]T

and (&(,0)) = &(t,6) . To solve the equation (1), least

squares method can be used. Then the estimate of standard
PLR is given by

R 1 N , _ILN
H_{F;g(tve)él (tae):| N;é’(tae) t @)

gt—l

Since the 6 may not satisfy that A(z) and  (z)have

zeros inside the unit circle. the projection into the unit circle is
required. The projection algorithm can be a good method for

this purpose[9].
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3. DWM AND ITS PROPERTIES

In this section, DWM is presented and its properties are
derived. At first, we will show that if we acquire the estimates
making the prediction error at current time become
uncorrelated with the one at past time, the estimate become the
true parameter as the sample number goes to infinite.

Now let's §(t, 0) in equation (1) as

14
g(t’e) = [€t71 5!* 5!* -1 gl* - ]
And a(e(t,0)) = €(t,0) like as in standard PLR.
Then the estimate is given by

6 = the solutionof [R (k)=0,k=1,--, + ]©3)

where R N (k) is defined as

1 N
RN (k) = FZ EE€
t=1

We note that R, (k) has the meaning of autocorrelation

function of the prediction error.

Equation (3) is a nonlinear algebraic equation with respect
to the parameter. In this case, the Newton-Rapson method [§]
is used. Then the estimate is given by

i+ i dR B
0" =0 —[ N} R,

do
where @' is the parameter estimate at i'th iteration and R,
is defined by

Ry =[R, () Ry( +)) )

The estimates resulted by (4) may not have zeros inside the
unit circle. We use the projection algorithm for this case.

Now, let's investigate the properties of DWM. The
properties include the uniqueness, consistency, and asymptotic

normality. For further statements, let's define as the

compact subset of R * and R (k) as the time average
of £,

E,_; » that is,

N
Z €€k

t=1

- .1

R(k) = lim —
N—e N

Before deriving the main properties, we need to derive the

convergence of R, (k) to E(k) .

Proposition 3.1
With the assumptions on true model and projection
operation on the estimated model,

sup Ry (k)= Ry (k)| =, . .1

as N — oo for kzl,"', +

proof:

We assumed €, is white Gaussian noise, which implies
that e, is i.i.d with zero mean and bounded fourth moment,
and the model structure  (z)/ A(z) is uniformly stable.

Moreover, A(Z)/ (Z) is also a uniformly stable filter.

These fulfills the assumptions of Lemma 8.4 in [7], which
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give the result of this proposition.

The derivation of the uniqueness use the residue integral

form in calculation of R (k) . From the relation
¢ = {1(2) (2) e
(2)4(2)
, R(k) can be represented as
§2u)(ﬂﬁfﬂ (z) s dz
(@4(z) (zH4E™

where § means the residue integral.

R(k)

Com z

Following proposition shows that the estimate which make

R(k) is unique and is the true value.

Proposition 3.2

If the estimates satisfy R(k) =0 for k=1, ---,
then

Az)=A(z) and (2)= (2)

+ 2

Proof:
From lemma 1 in [10],

A(z) (2)A(z™") (z7)/ "(2)A(2) (z7HA(z™)

is analytic in unit circle.
Since, A(Z) , (Z) R 12[(2) and A(z) have all zeros

inside the unit circle and A(z)and

factors, it is clear that 1:1(2) = A(z) and A(z) = (2).

(z) have no common

From the convergence of R N (k) and the uniqueness of

the estimate, the consistency is acquired as follows.

Proposition 3.3
If the estimates satisfy (3), then

60— 6" as N —oo
proof:
From the Proposition 3.1 and the compactness of , We
get
0 — r.w.p.1l, a3 N-—>o
where
,=10l6e  R(k)=0, k=1,-, + }
From the uniqueness of the estimate, the element of . is

only & ", which completes the proof.

Now let's investigate the asymptotic normality. The
asymptotic normality indicate how fast the estimate error
decays as the number of samples used in estimation increases.

Proposition 3.4

Let's R=[RQ)
and R, = [R, (1) Ry( + )]
[dﬁ /d e]gzg* exists and is nonsingular and that

R( +)Hf

Assume that

define
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N [RN]H:H* — 0 a N -—>o00 . And also
assume that the estimates satisfy (3), then \/ﬁ (é - 9*) has

normal distribution with mean zero and covariance Pg as

— -1 —-T
P, = d_R 0 d_R ith
o |,_, do |,_,

0= %/ml N lRZZ\;RN Je:a‘

N — o0 here

Proof:

We showed @ > 0 w. p. 1 as N —>c0 at the
Proposition 3.3. Moreover, by the projection of zeros of
A(z) and (z) into unit circle, the A(z)/ (z) is
uniformly stable and, therefore, its derivative with respect to

6 is also uniformly stable. These fulfill the assumptions of
Theorem 9.2 in [7]. Therefore, we get the results of this
proposition.

From this proposition, we can say that 0-6" decays
with  covariance P,/ N under some conditions

[d]?/dg]e: ,+ exists and is nonsingular and that
VN [R,],.,- > 0 as N — oo,

4. SIMULATION

In this section, the performance of DWM is verified through
the simulation. For simulation, following three ARMA(2,2)
models used in [6] are considered.

Model S1:

(140.9z7"'+0.95z7%) , =(1+1.25z27" +0.75z7)e,
Model S2:

(14+0.927'+0.9527%) , =(1+0.9z7 +0.65z2)e,
Model S3:

(1-1.5z7"40.7z7) ,=(1-0.7z"+0.25z7)e,
The models selected represent various systems which have
different characteristics each other. The pole zero plots of the
models are shown in Fig. 1. Model S1 and S2 have pole and
zeros near the unit circle and according to the [6], the standard
PLR method does not give accurate estimates for these two
models. The algorithms given by (3) for PLR and (4) for
DWM are applied to estimate the parameters. The obtained
results are listed in Table 1. The standard PLR method does
not converge for model S1 ~ S2 and converges closely to the
true values for model S3, which coincide with the results in
[6]. On the contrary DWM give the estimates close to true
values for all models chosen.

5. CONCLUSION

We proposed a new variant of correlation approach for
ARMA model. It is based on the idea to find the estimate
making the prediction error at current time become
uncorrelated with the one at past time. As good properties, we
proved the uniqueness, consistency, and asymptotic normality
of the estimate. With some simulations, we showed that the
proposed method give good estimates for various systems

compared to the standard PLR method.

j- lll/ﬁ'_. _-\-\-\I |ll--..-"r_ | _\-\-\-\I
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S

Fig. 1 The pole zero plot of the models chosen

Table 1 The estimation results

model method al afz)arametezsl )
true 0.9 0.95 1.25 0.75
S1 roposed 0.92 0.97 1.26 0.77
PLR 1.15 1.0 1.19 0.49
true 0.9 0.95 0.9 0.65
S2 roposed 0.91 0.98 0.91 0.68
PLR 1.11 1.0 1.08 0.69
true -1.5 0.7 -0.7 0.25
S3 roposed -1.47 0.67 -0.67 0.25
PLR -1.49 0.69 -0.69 0.25
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