
1. INTRODUCTION

Embedded systems such as information appliances and
control devices are being small-sized and light-weighted while
providing various high performances. These devices usually
employ the SoC (System on chip) in which MPU (Micro
Processing Unit), memory, DSP (Digital Signal Processor) and
other devices are included. Because SoC is developed on a
single semiconductor chip, it is low power consumption and
very reliable because of using functionally certified IP
(Intellectual Property). And one can reduce development cost.
However, its development requires great amount of effort and
becomes time consuming, because it is integrated with one
chip embedding complex functions. [1] To cope with the
disadvantage, Embedded Operating System is widely used. [2,
3, 4]

Real-Time Operating Systems have been largely used as an
embedded operating system. Because it is an operating system
that satisfies time limitation, it is being largely employed in
the military-equipment filed, and recently in fields such as
robots and automation systems. However, most RTOS
(Real-Time Operating System) are commercially available so
that the technology may be dependent on the RTOS vendors,
and furthermore development cost is expensive. [5]

In this paper, the open source, Real-Time Embedded Linux,
RTAI (Real-Time Application Interface) has been ported to
Intel PXA255-based hardware to build a network-based
control system platform. For RTAI applications, Boot Loader
has been developed. And RTAI-patched Linux kernel should
be ported to the SoC-based hardware by modifying hardware-
dependent portions. And then, we have implemented the
Real-Time device driver for peripheral devices and developed
file system. Finally, in order to verify the feasibility of
Real-Time Embedded Linux based control platform, we
applied it to mobile robot. [6]

2. REAL-TIME OPERATING SYSTEM AND RTAI

RTOS is defined as the system guaranteeing response in

accordance to the operation, in a given period of time. This
does not necessarily mean the fast response system, but it
represents the system providing the desired output using
system functions with predictable response time. RTOS is a
software to manage time to support multi-tasking programs,

and provides inter task mechanism such as synchronization,
semaphore and pipe, and scheduling mechanism to guarantee
that important task run first. Also, recently, the integrated
development environment is provided to reduce development
time. Therefore, RTOS may be considered as a good building
block to develop Real-Time systems.

RTOS, despite their advantages, is difficult to use and are
very expensive, not to mention that sources are not open to the
public in most cases, and needs to re-invest the development
environment when changing the processor. And all services
are provided by the single OS, and are limited to what is
provided by eth vendor. Although Embedded Linux is being
used to solve these problems, Embedded Linux does not
support Real-Time systems. For these reasons, many
researches have been taken to insure Real-Tim while also
utilizing all advantages of the Embedded Linux. Especially
RTLinux (Real-Time Linux) and RTAI has been widely used.
[7]

RTAI is a hard Real-Time extension to the Linux kernel.
The RTAI project is a Free Software project that was founded
by the Department of Aerospace Engineering of Politecnico di
Milano (DIAPM). It has evolved into a community project
coordinated by Professor Paulo Mantegazza of DIAPM. RTAI
is a sub-kernel that runs under Linux. It provides hare
Real-Time response by running Linux as the idle task.
Interrupts are intercepted by RTAI where they may be
processed by a RTAI interrupt handler or passed up to Linux.
RTAI supports various hardwares such as ARM, PowerPC,
MIPS, and CRIS. Truthfully, RTAI is not a RTOS, but it
rather an interface for Real-Time tasks. That is, an operating
system is required to use RTAI. In this paper, Linux is used as
the operating system to interface with RTAI. [8]

Figure 1 shows the basic structure of RTAI, and it can be
known that dual kernels are being used. RTAI and Linux
kernel are executed by HAL (Hardware Abstract Layer), and it
may interface with the hardware. HAL, when executing RTAI
and Linux kernel, primarily executes Real-Time tasks
(RT_TASK) of RTAI, and then runs the Linux kernel in the
lowest priority. That is, Real-Time tasks are first executed,
and when these tasks are not in ready-to-run state, Linux
kernel and processes of the Linux kernel are then executed. [9,
10]

Implementation of a network-based Real-Time Embedded Linux platform

Byoung-Wook Choi*, and Eun-Cheol Shin**, Ho-Gil Lee**
* Department of Electrical Engineering, Seoul National University of Technology, Seoul, Korea

(Tel : +82-2-970-6412; E-mail: bwchoi@snut.ac.kr)
**Korea Institute of Industrial Technology, Ansan, Korea

(Tel : +82-31-400-3991; E-mail: unchol@kitech.re.kr)
**Korea Institute of Industrial Technology, Ansan, Korea

(Tel : +82-31-400-3991; E-mail: leehg@kitech.re.kr)

Abstract: The SoC and digital technology development recently enabled the emergence of information devices and control devices
because the SoC present many advantages such as lower power consumption, greater reliability, and lower cost. It is required to
use an embedded operating system for building control systems. So far, the Real-Time operating system is widely used to
implement a Real-Time system since it meets developer’s requirements. However, Real-Time operating systems reveal a lack of
standards, expensive development, and license costs. Embedded Linux is able to overcome these disadvantages. In this paper, the
implementation of control system platform using Real-Time Embedded Linux is described. As a control system platform, we use
XScale of a Soc and build Real-Time control platform using RTAI and Real-Time device driver. Finally, we address the feasibility
study of the Real-Time Embedded Linux as a Real-Time operating system for mobile robots.

Keywords: Real-Time system, Real-Time device driver, RTAI, Embedded Systems

1840

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Fig. 1 RTAI Structure

3. REAL-TIME EMBEDDED LINUX PORTING &

RTAI INSTALLATION
3.1 Development Environment & Boot Loader

In this paper, RTAI has been applied to an Intel PXA255
based system board. PXA255 is a SoC of ARM10 core
architecture, reaching at a maximum operating frequency of
400MHz, and includes memory controllers such as DMA
controller, and MMU (Memory Management Unit). As
peripherals devices, it includes USB Slave, UART, I2C, and
LCD interface. The system board also includes SDRAM
(64MB), Flash memory (32MB), 10/100Mbps Ethernet
controller, USB Host, Touch Screen, and Color LCD.

To apply RTAI to the system board (or target system), the
development environment must first be constructed. Unlike
program development in PC (or Host), program development
in embedded systems can not be directly developed in the
system board, hence generally used in PC. Furthermore, the
executable file developed in PC are downloaded to the system
board and then executed. Figure 2 shows the general
development environment of the embedded systems.

Fig. 2 Development Environment of the Embedded System

The serial port in the Fig.2 monitors the system board. In

most embedded systems, monitors are not installed. Therefore,
the state of system board is verified using the serial port just
like a console terminal. The JTAG (Joint Test Access Group)
interface downloads the boot loader, and when using JTAG
emulator, it may also debug hardware in chip levels. Ethernet
port is used to download kernel and file system images by
using the boot loader. In addition, the cross tool-chain is
required as a cross-development environment. This is because
the processor used in PC and the target processor is different
from each other. The sources required to build the cross
tool-chain are follows.

- binutil : Assembler & loader, miscellaneous GNU tools
- glibc : Library for constructing cross compiler
- kernel : Kernel header source
- patch : Patch file for target processor
In each source, the patch for the target processor must

be applied. Because binutil and gcc will be used in PC,
a compiler for PC is used. On the order hand, glibc will
be used for the application used in the target system so

that a cross-compiler for target processor is applied for
building images.

The boot loader is a program initializing the hardware,
and performs functions such as Interrupt Vector and
Memory Map setup. In this paper, the boot loader called
Blob (Boot Loader Object) has been used. Blob is a
boot loader supporting StrongARM and XScale
(PXA250 and PXA255). Aside from hardware
initialization, it includes the function of downloading
kernel and file system images through Ethernet and
storing them in Flash memory. To apply Blob to the
system board, the memory map and system register, the
UART and Ethernet device drivers need to be modified.
This is because each system has a different memory
map and peripheral devices. The modified boot loader is
converted into a binary image file using the cross
compiler and downloaded and stored to the 0x00
address in the Flash memory using JTAG interface. Fig.
3 shows the booting process of boot loader executed in
the system board.

Fig. 3 Booting sequence of boot loader

3.2 Real-Time Embedded Linux Porting

Linux kernel is an application program placed on the
hardware level and is divided into the hardware-
dependent and the hardware-independent part.
Generally, Linux porting represents the modification of
processor-dependent functions, in which boot code
porting, memory map initialization, system register
initialization, and developing device driver are
performed. The kernel porting patched with RTAI is
also performed in the same process. The following
shows the process of porting the RTAI patched kernel to
the system board.

1) Apply ARM patch and RTAI patch to the Linux
kernel. Because the system board used ARM core based
SoC, ARM patch must also be applied together. RTAI
patch usually modifies the timer and interrupt-related
programs.

2) Modify system register, memory map, interrupt
and others according to the configuration of the system
board.

3) Set the Linux kernel according to the target
hardware, and compile it. When setting the kernel, the

1841

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

setup shown in Fig. 4 must be done so that RTAI HAL
can be used.

Fig. 4 Kernel setup for RTAI usage

4) Using the boot loader, download the compiled

kernel image to the system board and burn it into the
Flash memory

The core of the Linux operating system is known as

the kernel. When an Embedded Linux system boots
after doing the Linux kernel porting, the kernel is loaded
into memory from a device that an embedded system’s
boot monitor can access, and then executed. The kernel
automatically probes, identifies, and initializes as much
of your system’s hardware as possible, and then looks
for an initial file system that it can access and load and
run applications from in order to continue the boot
process. The first file system mounted by Linux systems
during the boot process is known as a root file system
because it is automatically mounted at the Linux
directory ‘/’, which is the base of the hierarchical Linux
file system. Once mounted, the root file system provides
the Linux system with a basic directory structure that it
can use to map devices to Linux device nodes, access
those devices, and locate, load, and execute subsequent
code such as system code or your custom applications.
In Fig. 5, an error occur showing that it cannot find the
root file system in the booting process because the file
system is not placed.

Fig. 5 Booting sequence of the RTAI patched Linux kernel

3.3 File System Construction
File system represents the physical storage space

where shell, library, application programs, and others
are located as shown in Fig. 6. Fig. 6 shows the types of
file system used for Embedded Linux and the
construction process.

Fig. 6 Filesystem construction process

In Linux, programs such as shells, application

programs and libraries are available as open source.
However, these cannot be directly compiled and used.
This is because the provided sources are available for
x86 architecture. To make a file system, you should
modify the provided setting options of each source, and
then compile them by using a cross-compiler and
cross-libraries. The created execution files and libraries
are converted into a single file system image using file
system utility.

In Embedded Linux, RAMFS (RAM File System),
ROMFS (ROM File System) and JFFS2 (Journaling
Flash File System Version 2) are generally used. The
types of root file systems that your Embedded Linux
system supports during the boot process depend on the
types of file systems that are supported by the kernel
that you are booting. Root file system in formats such as
the JFFS2 are typically used on systems with Flash
memory that can be partitioned into multiple sections,
usually containing the boot monitor, the loadable kernel
image, and a JFFS2 file system. JFFS2 file system has
been constructed including BusyBox, Tinylogin, Bash,
and libraries. JFFS2 file system reduces system restart
time by minimizing the chances that a file system will
be left in an inconsistent state by a system crash or
unplanned restart. In this paper, we also developed
JFFS2 file system. Once the file system is completed,
download the file system to the system board and store
it into the Flash memory.

3.4 Device Driver Creation

The device driver is a standard interface used for
delivering information between the operating system
and the hardware. In addition, when creating the device
driver, it enables different hardware to approach to a
common interface. Linux device driver is divided into
the character device, block device, and the network
device driver. The character device driver is device that
enables reading and writing without undergoing buffer,

1842

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

such as serial/parallel communication, keyboard, mouse,
etc. The block device driver is a device inputting/
outputting data in block units through buffer cache,
including hard disk, and CD-ROM. The network device
driver is a device transmitting and receiving packets,
such as Ethernet. [11]

The device driver may be created using two methods.
The first method is to include it in the kernel and
initialize when booting, and the other method is creating
it as a module and including it to the kernel, only when
necessary. In the present thesis, as an example of
directly registering to the kernel, the network driver
creation method shall be discussed.

First, create the driver source for the Ethernet used in
the Linux source’s driver/net directory. However,
because most device driver sources are included in the
kernel source, there are few times when the total source
has to be created, and in many cases only the memory
map or the interrupt-related portion is modified. Also in
the present thesis, the smc91x.[ch] source, included in
the kernel, has been modified and used. Upon source
code completion, modify the kernel setup menu script to
set the source device created during kernel setup.
However, if it already included in the kernel, set the
menu.

Upon kernel setup completion, compile the kernel
source, download it to the system board and store,
followed by re-boot. Fig. 7 shows the booting results of
the kernel, with the described file system stored in the
system board and with device driver created.

Fig. 7 Booting Sequence of Linux system with file system and

device drivers

3.5 RTAI Installation & Test
To use HAL and Real-Time mechanism, provided by

RTAI, module sources for each mechanism need to be
compiled and added the kernel. However, compile and
installation option of RTAI is prepared to us x86
compatible processors so that this option needs to be
modified for PXA255. Additionally, x86 compatible
processors support LXRT (Linux Real Time) and
Real-Time serial drivers, but PXA255, used in this
paper, does not support them. Therefore, it is necessary
to build Real-Time serial drivers for PXA255.

The RTAI modules prepared for PXA255 are as
follows.

rtai_bits.o, rtai_fifos.o, rtai_hal.o, rtai_ksched.o,
rtai_math.o, rtai_mbx.o, rtai_mq.o, rtai_msg.o,
rtai_sem.o, rtai_tasklets.o, rtai_up.o, rtai_usi.o,
rtai_wd.o

To execute Real-Time task, the rtai_hal.o and

rtai_ksched.o modules should be included in the kernel.
The rtai_hal.o is the module for HAL, and rtai_ksched.o
is the module for the scheduler. Other modules can be
inserted to the kernel if necessary. Fig. 8 is the result of
executing 4 different tasks, each with different cycles,
priority, and execution orders. task1 and task2 execute
in 20ms cycles, while task3 and task4 run in 30ms
cycles. The order of execution is task1->
task2->task3->task4. Here, task1 and task3 have higher
priority than task2 and task4. Because task1 has a higher
priority than task2, it is executed first. Similarly, task3
is executed prior to task4. Out of task3 and task1, task1
is executed first by the priority, and because task2 has a
lower priority than task3, it is executed after task3.

Fig. 8 Results of Real-Time task execution.

4. REAL-TIME SERIAL DRIVER

4.1 Real-Time Serial Driver Structure
In RTAI, Real-Time device drivers such as RT_COM

used for serial communication, RT_NET used for
Ethernet networking, and RT_CAN for CAN
(Controller Area Network) are supported. In Real-Time
device drivers, unlike Linux device drivers, the blocking
function is excluded, and the IRQ and interrupt handler
are registered to HAL. For instance, in the event of
transmitting data in RT_NET, TCP communication
verifying transfer status is not supported, and only UDP,
which does not verify transfer status, is supported. [12,
13, 14]

In this paper, the serial driver, RT_COM has been
applied. RT_COM is a Real-Time serial driver for
RTLinux and RTAI, and is one of the open source
projects performed in SourceForge.net.

Because the structure of Linux serial driver is as
shown in Fig. 9, delay may occur handling other ISR
(Interrupt Service Routine), the blocking function or
other processes used in the device driver.

1843

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Fig. 9 Linux serial communication program structure

On the other hand, when utilizing RT_COM and

Real-Time task, the structure is as shown in Fig. 10. The
task priority of serial_task becomes higher than other
tasks, and it may eliminate delay occurred due to other
tasks. Real-Time is guaranteed because the blocking
function is not included even in the device driver.

Fig. 10 Structure of serial communication using RT_COM

RT_COM stores information and data of each serial

port to the data structure of the rt_buf_struct and
rt_com_struct. The rt_buf_struct is a structure to
integrate S/W FIFO (First-In First-Out), and is
connected with H/W FIFO. The start address of serial
port, IRQ, ISR, and serial port-related setup values are
stored in the rt_com_struct. Because RT_COM is
implemented with module structures, it is loaded to
kernel when it is required. IRQ and ISR stored in the
rt_com_struct are registered to HAL, and the interrupt is
activated. In HAL, if an interrupt corresponding to IRQ
occurs, the registered ISR is invoked.

The main functions of RT_COM are composed of
rt_com_setup, rt_com_write, rt_com_read. The
rt_com_setup is a function initializing the
communication speed, parity bit, data size, FIFO trigger
level, etc, while rt_com_read is a function reading data
from the serial port. However, the rt_com_write and
rt_com_read are not functions which directly handle the
hardware FIFO, and they either read data stored in the
S/W FIFO, or write data into this FIFO. Real data
input/output is performed in the ISR, called by the
occurred interrupt when writing the set data amount to
FIFO, from the FIFO trigger level. This function either
writes the data into the hardware FIFO, or reads the data
stored in this FIFO. [15]

4.2 Implementation of Real-Time Serial Driver

RT_COM has been prepared for x86 compatible

processor, with built-in UART controller. Therefore, it
is available for any processor included built-in 16550
compatible UART controllers through source code
modification.

The portion to be modified in order to use RT_COM
in PXA255 are hardware dependent stuffs that are the
start address of the UART controller, IRQ allocated
from the processor, and the internal register of the
UART controller. The start address of PXA255 UART
controller has been modified to 0xf8200000, and IRQ to
14. Also, the clock cycle used for UART controller,
FIFO trigger level, and interrupt-related registers have
been modified.

4.3 Comparison between Real-Time Serial Driver and Non
Real-Time Serial Driver

To perform the experiment comparing RT_COM and
Linux serial driver, we apply them to motor speed
control, in which the speed command is transferred by
serial communication.

The communication speed between the motor module
and system board is 57600bps. The encoder used in this
paper has 4000 pulses in one cycle. The system board
counts the encoder value with 4-multiple method. In this
paper, the traveling distance of one rotation cycle is
around 308mm, and the maximum velocity of the motor
is 500mm/s. The motor speed command is transferred
on every 20ms.

The experiment procedure is as follows.
1) Increase speed with 0.2m/s2 acceleration during

2 seconds.
2) Maintain constant velocity during 2 seconds

with constant motor acceleration.
3) For 4 ~ 6 seconds, reduce the speed with the

motor acceleration of 0.2m/ s2

Fig. 11 is the result of using RT_COM, and Fig. 12 is

the result of using the Linux serial driver. The traveling
distance of Fig. 11 is 1.71m, and the traveling distance
of Fig. 12 is 2.06m.

Fig. 11 Motor control using RT_COM

1844

ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Fig. 12 Motor control using Linux serial driver

As shown in Figs. 11 and 12, the velocity of the

mobile robot has increased and decreased in fixed ratio
when using RT_COM. However, when using the Linux
serial driver, the velocity of the mobile robot has
increased and decreased irregularly because the velocity
command is irregularly transferred to the motor
controller. Consequently, the control period is not
guaranteed and delayed. Therefore, the traveling
distance in the case of the Linux device driver resulted
in 0.35m greater than when using RT_COM. The reason
for such result is because when using Linux serial driver,
speed could not be increased and decreased with exact
cycles due to other ISR or processes.

5. CONCLUSION

Embedded systems such as information appliance and

control device are being small-sized and light-weighted while
providing various high performances. These devices usually
employ the SoC. Although SoC provides diverse development
advantages, it is limited when being developed without an
operating system because of its complex functions. Therefore,
embedded operating system and Real-Time operating systems
are being applied in the embedded systems. However,
embedded operating systems cannot support Real-Time, we
have to use expensive Real-Time operating systems.

In this paper, we use a Real-Time Embedded Linux, RTAI
to utilize the advantages of Embedded Linux, such as open
source licensing and a strong developer community. RTAI, by
choosing the method of providing interface for Real-Time
tasks using Linux as the basic operating system, has
minimized kernel modification. Therefore, it does not only
provide Real-Time with simple modification operations in the
Embedded Linux-applied system. And it supports average
latency time of 3 ~ 4us, it does not fall back to commercial
operating systems (1 ~ 20us). Furthermore, we developed
Real-Time serial driver for PXA255 target system, and applied
motor control system to show the advantages of the Real-Time
system.

The control system platform developed in this paper is a
SoC based embedded system, use RTAI and Real-Time serial
device driver to guarantee periodic response time. We also
verify the feasibility of control system platform using RTAI
with motor control system which is widely used for mobile
robots. We believe that the results of this paper are useful to
build Real-Time control platforms for intelligent mobile
robots.

REFERENCES

[1] Electronic Tread Publications, System on chip Market

and Trends, April, 2003.
[2] Deok Yeon Cho, Byoung-Wook Choi, "Commercial

Inverter's Web-based Remote Management Using
Embedded Linux", Control & Automated System 제어
및 Engineering Association, 9th book 4th issue, 340-346,
2003.

[3] Byoung-Wook Choi, Eun-Cheol Shin, Soo Young Lee,
"Web-based Building Automated System Using Embe
dded Linux", Control & Automated System Engineering
Association, 10th book 4th issue, 335-341, 2004.

[4] Byoung-Wook Choi, Hyun Ki Kim, Eun-Cheol Shin,
"Connection Application Between Embedded Linux
Based Multiple Protocol Controller Development &
Building Automated System", Control & Automated
System Engineering Association, 10th book 5th issue,
428-433, 2004.

[5] Byoung-Wook Choi, "Embedded Operating System and
It's Applications in Development for Networked Robot",
Korea Robot Engineering Association, 1st Workshop,
2004.

[6] Huins Technology Research Center Co, "Intel PXA255
and Embedded Linux Application", 2004, Heung Neung
Science Publisher.

[7] Ismael Ripoll, "RTLinux versus RTAI", www.linux
devices.com, 2002.

[8] Kevin Dankwardt, "Comparing real-time Linux
alternatives", www.linuxdevices.com, 2000.

[9] L.Dozio, P.Mantegazza, "Linux Real Time Application
Interface(RTAI) in low cost high performance motion
control", Motion Control 2003, a conference of
ANIPLA, Associazione Nazionale Italiana per
I'Automazione, Milano, Italy, 27-28, March, 2003

[10] Herman Bruyninckx, "Real Time and Embedded Guide",
December, 2002

[11] Written by Alessandro/Translated by In Seong Kim, Tae
Joong Ryu, "Linux Device Driver", February, 2000,
Hanvit Media.

[12] Hard Real-Time Networking for Linux/RTAI,
www.rts.uni-hannover.de/rtnet.

[13] Real-Time CAN on Linux, sourceforge.net/project/rtcan
[14] Real-Time Linux driver for the serial port,

rt-com.sourceforge.net.
[15] P.N. Daly and Kupper, "The serial port driver of

Real-Time Linux", Real Time Documentation
Project, Vol 1, 2000

1845

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

