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1. INTRODUCTION 

 
Control of cartpole[1] system has been the object of quite 

many studies in the literature of control and neural networks. 
Fig. 1 shows the cartpole system. A rigid pole is hinged to a 
cart which travels along the track. The pole can rotate in the 
vertical plane of the cart. An impulsive force is applied to the 
cart at discrete time intervals to control the system.  

Most control problems of the cartpole system are just for 
balancing the pole without considering the position of the cart. 
To balance the pole, the cart is pushed back and forth on the 
track so that the pole never deviates by more than certain, for 
example 12 degrees from the upright position. However, more 
demanding control problems require balancing as well as 
centering which means that the controller is to bring the cart 
back to the center of the track while keeping the pole upright. 
Even on a track of limited length, balancing does not imply 
centering. Some controllers are capable of balancing and 
centering if a slightly longer track is available [1].  

There are many intelligent control techniques to balance the 
pole of the cartpole system. BOXES scheme is the first 
attempt at unsupervised learning. Barto et al. [2] proposed a 
reinforcement learning scheme using two neuron-like adaptive 
elements and bang-bang control for balancing the pole. Using 
neural networks, Anderson [3] presented reinforcement and 
temporal-difference learning methods to balance the pole. A 
modified structure of CMAC neural networks was proposed to 
accelerate reinforcement learning control and applied to a 
cartpole balancing problem [4].  

Fuzzy control is used in many techniques for the cartpole 
control. Lee [5] developed an intelligent control scheme by 
integrating fuzzy control and reinforcement learning 
techniques. To balance the pole, 7 linguistic values (labels) for 
the pole angle and 3 labels for the angular velocity of the pole 
were employed to generate continuous forces as output. Deng  
et al. [6] proposed a neural-fuzzy BOXES control system with 
reinforcement learning where the state space is divided into 
some overlapping fuzzy boxes by defining input membership 
functions for each state variable. Although the control scheme 
is expected to yield more generalization and learning abilities, 
it is only to balance the pole. 

On the other hand, there are few application examples for 
balancing the pole and centering the cart. A learning 
architecture was proposed for training a multilayer neural 
network which provides the proper forces to the cart so that 
the pole is balanced and the cart is guided to the center of the 
tack [7]. To determine the force necessary to control the 
cartpole system, priori knowledge regarding the relationships 
among state variables for balancing the pole was utilized. 
Some learning processes were not successful. Berenji and 
Khedkar [8] proposed a new way of designing and tuning a 
fuzzy logic controller where learning is achieved by 
integrating fuzzy inference into a feedforward neural network. 
The method was applied to a cartpole control system where 4 
labels were employed for each of 4 state variables and 9 labels 
for force. And, 9 fuzzy control rules were involved for 
balancing and 4 rules for positioning cart at a specific location 
on the track. Although the control objective is achieved, some 
linear oscillation of the cart and angular oscillation of the pole 
may be present. A fuzzy-inference-based reinforcement 
learning algorithm which combines the fuzzy inference engine 
with neural networks by reinforcement signal generating was 
proposed. The algorithm was applied to the cartpole system 
where 2 state variables and action network’s output were used 
as the inputs to the controller [9]. However, the system 
performance for hard initial configuration of the cartpole 
system is questionable. 

In this paper, in order to control the cartpole system in 
terms of both balancing and centering, a fuzzy BOXES control 
scheme is developed. Two independent fuzzy controllers, one 
is based on the angular position and the angular velocity of the 
pole and the other based on the position and the velocity of the 
cart, are employed to produce the control forces. To apply 
proper control force, one of two fuzzy controllers is selected 
for every time step due to a BOXES algorithm. The BOXES is 
established through observation of the outcomes of the control 
action. The behaviors of the cartpole are analyzed to discuss 
the fuzzy BOXES control scheme. 
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Fig. 1 A cartpole system. 4 variables define the

system state: x  and x , the position and the velocity

of the cart and φ  and φ , the angular position and the
velocity of the pole. 
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2. FUZZY CONTROL 

 
Although there may be a few cases of using 4 state 

variables for fuzzy logic controller for the cartpole system [10], 
most of fuzzy controllers use 2 state variables, the pole angle 
( φ ) and the angular velocity of the pole ( φ ), for the cartpole 
balancing problem [11]. Unfortunately, with these controllers, 
there is no way to control the position of the cart while the 
pole is balanced. In fact, using the other 2 state variables, the 
position of the cart ( x ) and the linear velocity of the cart ( x ), 
a fuzzy controller can balance the pole as well as bring the cart 
back to the center of the track. However, it takes too long time 
until the fuzzy controller brings the cart back to the track 
origin. 

First of all, it is necessary to discuss about the fuzzy 
controllers based on 2 state variables, φ  and φ , (called 
φ -fuzzy controller). For a φ -fuzzy controller, there are 7 
linguistic values for each input state variable and 7 linguistic 
values for the output variable, force. Triangular membership 
functions are used for all linguistic values. “Center of gravity” 
(COG) defuzzification method [11] was used to combine the 
recommendations represented by the implied fuzzy sets from 
all the rules. For computer simulations of the cartpole system, 
a 4th order Runge-Kutta method with a time step of 0.04 
seconds was used to approximate numerically the solution of 
the friction dynamics equations with cartpole parameters in 
[2]. 

Fig. 2 shows the cart position and pole angle versus time 
when the cartpole system operates by the φ -fuzzy controller 
after the system is released at the state of (1.0,-1.0,-10.0,40.0).  
The figure illustrates that the controller is able to balance the 
pole very quickly even though the cart is out of control to 
bring back to the track origin. Therefore, that the φ -fuzzy 

controller based on φ  and φ  can balance the pole means 
that it is certain that the amplitude of the angular oscillation of 
the pole decreases fast. Thus, the fuzzy controller should 
decrease the amplitude of the angular oscillation of the pole in 
all circumstances whenever the pole does not fall. 

On the other hand, it is found that the fuzzy controller 
based on 2 state variables, x  and x , (called x-fuzzy 
controller) can move the cart back to the track origin while the 
amplitude of the angular oscillation decreases very slowly. 

The x-fuzzy controller is designed using the same parameters 
as the φ -fuzzy controller. Fig. 3 shows that the cart moves 
quickly to the center of the track as the pole oscillates 
continuously while the magnitude of its angular oscillation 
decreases very slowly after the system is released at the state 
of (1.5,-1.0,.-10.0,40.0). Thus, it is noted that the x-fuzzy 
controller is definitely able to bring the cart back to the track 
origin. However, it seems that because of the very lazy 
convergence of the x-fuzzy controller, most fuzzy controllers 
use the other 2 state variables for the cartpole control.  

The comparison of Fig. 2 and Fig. 3 shows that the system 
behaviors due to these fuzzy controllers are very contrasting. 
The φ -fuzzy controller is very quick to control the angular 
position of the pole whereas the x-fuzzy controller is too slow 
to balance the pole. On the other hand, the φ -fuzzy has no 
control over the distance of the cart from the track origin while 
the x-fuzzy controller has the capability to move the cart to the 
track origin very quickly.  

Hence, it is supposed that proper coordination of these two 
controllers should accomplish a good control in terms of 
balancing the pole as well as centering the cart of the cartpole 
system. Here is a simple scheme to do this: Given a state of 
the system, at start, the φ -fuzzy controller is preferentially to 
produce the control force. If the distance of the cart from the 
track origin decreases because of the control force, the 
φ -fuzzy controller keeps the control of the system for next 
time step. Otherwise, the x-fuzzy controller gets the job. Then, 
the control force due to the x-fuzzy controller is applied. Then, 
the angular displacement of the pole is examined without 
regarding the position of the cart since the cart will converge 
to the track origin soon as long as the x-fuzzy controller keeps 
the control. If the angular displacement is less than the 
previous one, the controller continues producing the control 
force. Otherwise, the control is to be transferred back to the 
φ -fuzzy controller. This procedure continues. 

Fig. 4 shows the system behavior in terms of the changes of 
x and φ  due to this control scheme. It takes about 50 

seconds for the two cooperating fuzzy controllers to move the 
cart back to the track origin while the angular amplitude of the 
pole decreases regularly with some discontinuous changes of 
the pole angle. Although both the cart and the pole oscillate 
for a while, magnitudes of the oscillations become negligible 
soon. It is very interesting to see that the cooperation of two 
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Fig. 2 The cart position and the pole angle versus
time of the cartpole due to the φ -fuzzy controller. 
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Fig. 3 The cart position and the pole angle versus time
of the cartpole due to the x-fuzzy controller. 
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fuzzy controllers whose behaviors are quite distinctive comes 
up with balancing and centering of the cartpole system seen as 
in Fig. 4. This figure can be compared with Fig. 5 that is due 
to a linear control law [12]. It seems that the system behavior 
of the Fig. 4 is more natural in terms of slow convergence than 
that of the Fig. 5. 

Through many experiments with this control scheme, it is 
found that the φ -fuzzy controller should play a major role in 
the cooperative control in this scheme for balancing as well as 
centering. However, it is the x-fuzzy controller that makes the 
cooperation ended up with moving the cart back to the track 
origin. 

According to this scheme, for some time steps, the selection 
of a fuzzy controller is altered from one fuzzy controller to the 
other if the pole angle is increased due to the x-fuzzy 
controller or the cart distance from the track origin is 
increased due to the φ -fuzzy controller. This means that the 
scheme cannot help suffering from some wrong selections 
although the cooperation of the fuzzy controllers is due to the 
changes of selection of the fuzzy controllers for some time 
steps. So, it will take longer time until the cartpole system gets 
stable and require more control actions. For example, for the 
Figure 4, there are 514 times of changing the selection of the 
fuzzy controllers out of 1251 time steps. This amounts to 
about 40 % of total time steps. This means that about 40 % of 
control actions were improper. It is estimated that those 

improper control actions result in more discontinuous changes 
of angular position of the pole and cause a longer time for 
control the system. 

However, this process of selecting proper fuzzy controller 
can be regarded as a learning process which will implement a 
mechanism to select a proper fuzzy controller for every time 
step based on the system state by observing the outcome of the 
control. 

 
3. BOXES Scheme 

 
BOXES scheme was proposed by Michie and Chambers 

[13] and was applied to control the cartpole system. The 
scheme is to partition the continuous state space into a small 
number of sub-spaces, or called ‘boxes.’ Each box is supposed 
to contain a local demon. The local demon has a switch to 
select a control action so that determining which system state 
is entered into its box. 

Now, for a fuzzy BOXES controller, a BOXES learning 
scheme is devised to implement the mechanism that is to 
select a proper fuzzy controller for every time step in the 
cartpole control in terms of balancing and centering. Fig. 6 
shows a fuzzy BOXES controller where the (4-D) BOXES is 
composed by all the boxes that correspond to all of the 
combinations of the intervals that divide each state variable 
into a small numbers of disjoint regions by quantizing the 
variable. Thus, they divide the continuous 4-dimensional 
cartpole state space into disjoint boxes by quantizing 4 state 
variables. Two fuzzy controllers, the φ -fuzzy controller and 
the x-fuzzy controller, are integrated with the BOXES such 
that for every time step one of the fuzzy controllers is selected 
by the BOXES in order to produce proper control force. Here, 
it is noted that the number of linguistic values for each input 
variables for the fuzzy controllers may be different from the 
number of quantizing intervals for composing the BOXES. 

All the boxes of the BOXES are initialized before 
establishing the fuzzy BOXES controller. This means that the 
BOXES has never been trained. Training process for the 
controller is as following: (A) For starting with a given system 
state, the BOXES is called to locate the box that represents the 
system state. (B) If the content of the box is meaningful, for 
example +1 indicating that the φ -fuzzy controller is good for 
the corresponding system state and –1 is for the x-fuzzy 
controller, one of the fuzzy controllers is selected to produce 
the proper control force. With the force, the cartpole system 
operates. 

If the outcome of the operation due to the selection of the 
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Fig. 6 A scheme of the fuzzy BOXES controller where
a 4-D BOXES is integrated with two fuzzy controllers
for the cartpole control. 
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Fig. 5 The cart position and the pole angle versus time
of the cartpole due to a linear control law. 
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Fig. 4 The cart position and the pole angle versus time

of the cartpole due to the combination of the φ -fuzzy
controller and the x-fuzzy controller. 
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φ -fuzzy controller is good such that the new distance of the 
cart is smaller than the previous one, then the content of the 
box, +1 is kept as it is. Otherwise, the content is to be 
reinitialized. Similarly, if the outcome of the operation due to 
the selection of the x-fuzzy controller is good such that the 
new angular displacement of the pole is smaller than the 
previous one, then the content of the box, -1 is kept as it is. 
Otherwise, the content is to be reinitialized. For the next time 
step, the BOXES is called by getting the state vector of the 
cartpole system to identify the box that represents the system 
state for the BOXES. 

(C) However, when the BOXES is called at start, if the 
content of the box is not meaningful value, for example 0 
indicating the BOXES has nothing to do with selecting a 
proper fuzzy controller, preferentially the φ -fuzzy controller 
has to go ahead and produce the control force. Then, the 
BOXES gets a learning opportunity for the box that represents 
the current system state based on the outcome of applying the 
control force. +1 is stored in the box if the outcome is 
evaluated as good. Otherwise, no learning occurs for the 
BOXES and the content of the box is initialized again. 

(D) For the continuing time step, now, without calling the 
BOXES, the x-fuzzy controller is to produce the control force 
for the system state. Then, the BOXES has another learning 
opportunity based on the outcome of applying the force. –1 is 
stored in the box if the control is good. Otherwise, no learning 
occurs for the BOXES and the content of the box is initialized 
again. 

For the next time step that corresponds to the third time step 
after the BOXES failed in yielding a meaningful value, the 
process follows the procedure (A). Hence, the procedures (A) 
and (B) can be considered as the regular operation procedures, 
while the procedures (C) and (D) are for training the BOXES. 
That the preference is given to the φ -fuzzy controller when 
the BOXES fails in yielding a meaningful value for the 
selection of one of the fuzzy controllers is due to the 
experience with the cooperative control with two fuzzy 
controllers. 

The system operation continues and the BOXES gets some 
training opportunities from time to time. The content of some 
boxes may be updated several times while the cartpole system 
operates. The reason is that the neighboring system states are 
represented by the same box and the box may be called several 
times. Moreover, the content of a box may be updated 
differently from time to time since the box can be called for 
some neighboring states for which the selection of the fuzzy 
controller by BOXES may be different. While the system 
operates, the content of some of the boxes are +1, some other 

boxes contain –1, and the others contain 0. 
Now, let’s discuss the problem of constructing the BOXES. 

The cartpole system state is defined by 4 variables, x , x , 

φ  and φ . Then, for the selection of a proper fuzzy controller, 
the BOXES usually uses all of these 4 state variables to 
compose its boxes [2]. On the other hand, two fuzzy 
controllers use only 2 variables respectively. Thus, for each 
control action, only a half of the number of the state variables 
gets involved with producing the control force although the 
system state vector is defined by the whole variables. 

Here, let’s consider the size of the BOXES in terms of the 
number of boxes. Based on the number of partitions for each 
variable, the number of boxes is determined. If there are 10 
partitions for each variable, the number of boxes amounts to 

410 10,000=  for the 4-D BOXES. However, it is noted that 
the more number of partitions does not necessarily improve 
the performance of the BOXES learning scheme. Also, more 
boxes require more learning opportunities and more 
computation cost. Although as small as 1,296 ( 46= ) number 
of boxes could be a BOXES for the fuzzy BOXES controller, 
reducing the dimension of the BOXES is preferred to have 
less number of the boxes. 

For a development of constructing the BOXES with less 
number of dimensions, it is noted that the fuzzy controllers use 
only 2 state variables to produce the control forces even 
though the system state is described by 4 state variables. To 
the fuzzy controllers, two state variables, φ  and φ  or x  
and x , are enough to represent the system state. Accordingly, 
it is natural to consider a set of 2 state variables for the 
BOXES (2-D BOXES) for each fuzzy controller, φ -BOXES 

for φ  and φ  and X-BOXES for x  and x . 
Fig. 7 shows the diagram of the fuzzy BOXES controller 

with two 2-D BOXES. For this scheme, each BOXES gets a 
set of 2 state variables to identify the box which represents the 
system state. Thus, 2 boxes are identified for every time step. 
If the values of those two boxes are meaningful, then the 
selection of the fuzzy controllers is decided preferentially 
according to the value of the box identified by the φ -BOXES. 
When only a box of the X-BOXES has a meaningful value, 
the x-fuzzy controller is selected to produce the control force. 
If both BOXES fail in yielding a meaningful value, then the 
learning process gets to follow the procedure (C) described 
above. 
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Fig. 7 A scheme of the fuzzy BOXES controller where
2 sets of 2-D BOXES are integrated with two fuzzy
controllers for the cartpole control. 
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  Fig. 8 The cart position and the pole angle versus time
of the cartpole due to a fuzzy 2-D BOXES controller. 
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Fig. 8 shows the system behavior due to the fuzzy BOXES 
controller of Fig. 6 for 50 seconds after the cartpole system is 
released at (1.5,-1.0,-10.0,40.0). The system behavior is 
compared with that of Fig. 4 which is for the two cooperating 
fuzzy controllers. For 1,251 time steps, 942 control actions 
were directly due to the value of boxes either of the 
φ -BOXES or the X-BOXES. For other time steps, 9 arbitrary 
actions were good for learning. However, the other 300 time 
steps were evaluated as bad. This amounts to about 24 % of all 
control actions. So, about 24 % of control actions were 
improper. Comparing this 24 % with 40 % for the case of the 
cooperative fuzzy controllers, it is possible to appreciate that 
more effective coordination of selection of fuzzy controllers 
could cause to improve the system behavior. The pole and the 
cart oscillate less frequently and the control converges soon. 

The number of total boxes of two 2-D BOXES is much less 
than those of the 4-D BOXES. If 10 partitions are employed 
for each state variable, 210 100=  boxes are required for 
each 2-D BOXES. For two 2-D BOXES, 
2 100 200× = boxes are necessary. This number is quite 
comparable to the number 1,296 with 6 partitions for each 
state variable by the 4-D BOXES.  

If the fuzzy BOXES controller with two 2-D BOXES is 
able to control the cartpole system, the controller is much 
more effective than that with 4-D BOXES. Since the latter 
uses less number of boxes, it will take less training time and 
be more active in updating its content of boxes.  

 
4. Discussion and Results 

 
The fuzzy 4-D BOXES controller with 1,296 boxes due to 6 

partitions for each state variable could take care of 
coordinating the selection of the fuzzy controllers. And, the 
system behavior was very similar to that of Figure 8. 

For the fuzzy 2-D BOXES controller, 2 state variables, x  
and x , were partitioned into 14 intervals for the domains of 
[-2.5,2.5] (m) and [-150,150] (m/sec) respectively and 196 
boxes were employed for X-BOXES. φ  and φ  were 
partitioned into 18 and 14 intervals for the domains of [-40,40] 
(degrees) and [-150,150] (degrees/sec) respectively and 252 

boxes were necessary for φ -BOXES. Total number of boxes 
448 is only 35 % of 1,296 which is the number of boxes for 
the 4-D BOXES. Even the fuzzy 2-D BOXES controller with 
100 boxes for the X-BOXES and 140 boxes for the 
φ -BOXES is able to coordinate the selection of the fuzzy 
controllers. 

Adopting two 2-D BOXES brings an interesting effect. 
Some different system states defined by 4 state variables are 
represented to the x-fuzzy or the φ -fuzzy controller as the 
same state based on 2 state variables. Due to this, for some 
different system states, the content of the same box may be 
updated. This characteristic seems to make the BOXES 
scheme adapted for most recent system states.  

It is important for this scheme to update the content of the 
box which represents the system state at the corresponding 
time step according to the outcome of applying a fuzzy 
controller. When the content of a box is updated, the previous 
content is simply ignored. 

Table 1 lists the system states from t=6.20 to t=6.60 for 
0.40 seconds when the system releases from the state 
(1.5,-1.0,-10.0,40.0) of Fig. 8. In this table, C’l stands for 
controller and box denotes the box number. For example, at 
time t=6.20, the 50th box of the X-BOXES represents the 
system state and the φ -BOXES is not able to represent the 
system state since any box of the φ -BOXES has no 
meaningful value at the moment. Then, the x-fuzzy controller 
produces the force 3.968 (Newtons). Due to the control action, 
the angle of the pole increases from -2.708 to 2.731 (degrees). 
Then, it is determined that it is not good to let the x-fuzzy 
controller keep the control of the cartpole system at next time 
step since the pole reclines more although there is no doubt 
about centering the cart by the x-fuzzy controller in the end. 
So, the x-fuzzy controller should lose the control of the 
cartpole system and the content of the box of the X-BOXES is 
reinitialized. At time t=6.24, the φ -fuzzy controller takes the 
control. 

On the other hand, at time t=6.32, the φ -fuzzy controller 
was good since the cart moves toward the track origin from 
x=-0.931 to x=-0.930. Furthermore, at time t=6.44, by the 49th 
box of the X-BOXES system, x-fuzzy controller was able to 
control successfully.  

However, at most of time steps in the table except at t=6.32, 
6.44, 6.52 and 6.56, and 6.60, the fuzzy BOXES controller is 
not able to coordinate the selection of the fuzzy controllers 
since it has not been established with meaningful values at 
those boxes which represent the system states. In these 
situations, the control is due to the φ -fuzzy controller and 
x-fuzzy controller consecutively. In the mean time, through 
these mandatory control actions, the BOXES systems could 
get opportunities to establish their content. 

Not like other intelligent control techniques, this control 
scheme is able to produce the control forces which are odd 
symmetry with respect to system states. However, it seems 
that this symmetric force producing is mainly due to the 
characteristic of the fuzzy controllers. 

Comparing Fig. 8 with Fig. 5 due to the a linear control law, 
it is obvious that the fuzzy BOXES controller is very slow to 
converge while the system behavior looks stable. However, it 
is noted that the control scheme is simple to achieve both 
balancing and centering. 

 
 

Table 1 Some system states and the active controllers 
for some time steps after the cartpole system releases 
from the state (1.5,-1.0,-10.0,40.0) 

Time x  x  φ  φ  C’l box
6.20 -.929 -.102 -2.708 5.229 X 50
6.24 -.930 .051 -2.731 -6.373 φ  104
6.28 -.931 -.070 -2.747 5.619 X 50
6.32 -.931 .084 -2.753 -5.952 φ  104
6.36 -.930 -.035 -2.754 5.920 φ  107
6.40 -.932 -.065 -2.436 9.960 φ  107
6.44 -.934 -.076 -1.991 12.209 X 49
6.48 -.934 .079 -1.746 0.004 X 50
6.52 -.928 .232 -1.989 -12.091 φ  118
6.56 -.921 .100 -2.221 0.501 φ  106
6.60 -.919 .039 -2.070 7.032 φ  107
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5. Conclusion 
 
A control scheme was devised to coordinate two fuzzy 

controllers to balance the pole as well as to bring the cart back 
to the track origin of the cartpole system. One fuzzy controller 
based on the pole angle and the angular velocity of the pole is 
able to balance the pole while the other fuzzy controller based 
on the cart position and the linear velocity of the cart is able to 
bring the cart back to the track origin. The coordination is due 
to the BOXES system which is established through some 
learning experience. It is found that the fuzzy BOXES 
controller is able to control the cartpole system and the 
training strategy works good to establish the BOXES system 
while the cartpole system never fails during the training. 

Although there are quite many control techniques which are 
able to balance the pole, they cannot be utilized to bring the 
cart back to the track origin. Also, some of control schemes 
which are capable of balancing and centering do not perform 
well such that the controllers require longer training time or 
suffer from some residual oscillations. In contrast, the control 
scheme presented in this paper is simple to implement. In 
addition, it is expected that similar fuzzy controllers for other 
applications can be coordinated by adopting the learning 
scheme in a fuzzy BOXES controller. For example, a 
ball-beam control problem [14] could be performed by the 
control scheme presented in this paper. 
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