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1. INTRODUCTION 
 

Synchronization phenomena in coupled chaotic systems 
have been extensively studied during the last decade due to its 
theoretical challenge and its great potential applications in 
secure communications, chemical reactions and modeling 
brain activity [1-3]. However, some many synchronization 
methods require several controllers to realize synchronization. 
The linearly error feedback coupling scheme can be adopted in 
many real fields, due to its simple configuration and easy 
implementation. According to the condition of coupling 
signals, they can be classified into bidirectional [4-6] and 
unidirectional [7-9]. 

The objective of the synchronization is that the error states 
of two chaotic systems are asymptotically stable in the 
Lyapunov sense. In this paper by using Lyapunov stability 
theorem and linear matrix inequality, we stabilize the error 
between chaotic drive and response systems at the origin, via 
unidirectional and bidirectional linear feedback approaches. 

The paper is organized as follows. In Section 2, based on 
Lyapunov stability theorem and linear matrix inequality, the 
coupling parameters for linearly bidirectional coupled chaotic 
systems are derived. In Section 3, these methods are applied to 
a coupled modified Chua’s circuits. Numerical simulations are 
carried out in Section 4 for illustration and verification of the 
methods. Finally some concluding remarks are given in 
Section 5. 
 

2. CHAOS SYNCHRONIZATION WITH 
BIDIRECTIONAL OR UNIDIRECTIONAL 

COUPLING 
 

In order to observe the synchronization behavior, we 
consider two identical n -dimensional chaotic systems (which 
are called derive and response systems). The initial conditions 
of the systems are different. The drive and response systems 
are described by Equations (1) and (2) respectively. The third 
term of the right hand side has been added to the systems 
dynamics for the control design purposes. 
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and 
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nnRA ×∈  is a constant matrix, nn RRf →:  is a continuous 
nonlinear function, 1K  and 2K  are diagonal matrices 

which are used as the feedback gains to be calculated. 
Considering xye −=  and eMxfyf yx,)()( =− , error 

dynamics can be written as: 
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Since a chaotic system has bounded trajectories, 
),(, yxMM yx =  is a bounded matrix. 

The following theorem [10] gives the sufficient condition 
for system (4) to be globally stable. 
 
Theorem 1. If there exists a positive definite symmetric 
constant matrix P  and a constant 0>ε , such that 
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uniformly for any x  and y , where I  is the identity matrix, 
the error dynamics system (4) is globally stable, i.e., system 
(1) and (2) are synchronized. 
 
Proof. Consider the following Lyapunov function 
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Calculating its derivative, we have 
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for all 0)( ≠te . So, the theorem is proved.  
With respect to Theorem 1, the result can be simplified as the 
condition of unidirectional coupling chaos systems when 

01 =K  or 02 =K . 
In theorem 2 [11] the sufficient condition for system (4) to 

be globally asymptotically synchronized, is discussed. 
 
Theorem 2. If there exists the feedback gain matrices 1K  
and 2K  such that 
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uniformly for all x , y , then the error dynamical system (4) 
is globally asymptotically stable at the origin, implying that 
the two systems (1) and (2) are globally asymptotically 
synchronized. 

)(∗µ  denotes the matrix measure derive from the matrix 
norm ∗ . 
Corollary 1. The two systems (1) and (2) are globally 
asymptotically synchronized, if there exists the feedback gain 
matrix 21 KKK +=  such that at lease one of the following 
conditions is satisfied. 
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3. SYNCHRONIZATION OF MODIFIED CHUA’S 

CIRCUIT 
 

In this section we apply the above techniques to modified 
Chua’s circuit described by [12]; 
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which has a chaotic attractor as shown in Fig. 1 when 10=p  
and 7100=q . 
 

 
 

Fig. 1. The modified Chua’s circuit chaotic attractor. 
 

We have two modified Chua’s circuits where the drive 
system with three state variables denoted by the subscript 1 
drives the response system having identical equations denoted 
by the subscript 2. However, the initial condition on the drive 
system is different from that of the response system. The two 
modified Chua’s circuits with linearly bidirectional coupling 
are described, respectively, by the following equations. 
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Where )3,2,1;2,1( == jikij  are coupling parameters that to 
be determined in order to synchronize two modified Chua’s 

circuits in spite of the differences in the initial conditions. 
Let 121212 ,, zzeyyexxe zyx −=−=−= . Then, error 
dynamics can be written as; 
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where 3,2,1,21 =+= ikkk iii and 21

2
2

2
1, 21

xxxxM xx ++=  
is a bounded function. From Fig. 1 it can be seen that 

1)(1 <<− tx . 
Let choose the positive definite symmetric constant matrix 

},,{ 321 pppdiagP =  ,0>ip  3,2,1=i  and any constant 
,0>ε  then according to theorem 1; 
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Matrix in (10) is negative definite if and only if the following 
inequalities satisfy; 
 

0)
2

2
7

(2
1

,111 21
>−+−−=∆

p
pMpkp xx

ε      (11) 

0
)

2
1(2

2
2221

211

2 <
−+−+

+∆
=∆

p
kpppp

ppp
ε      (12) 

0

)
2

(20

)
2

1(2

0

3
332

32
2

2221

211

3 >

−−−

−−+−+

+∆

=∆

p
kpqpp

qpp
p

kpppp

ppp

ε

ε (13) 

 
By calculating the above determinants we can extract the 
following inequalities to get the values of ,21 iii kkk +=  

3,2,1=i ; 
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According to Theorem 2 and Corollary 1 there is a more 
simple procedure for choosing the feedback gain matrices 1K  
and 2K  as follows: 
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Now we can choose 3,2,1,21 =+= ikkk iii  such that 
 

0},1,7/)1(2max{ 321, 21
<−+−+−+− kqkpkMp xx   (18) 

 
or 
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<−+−−+−+− kqkpkMp xx  (19) 

 
So the two coupled modified Chua’s circuits are globally 
asymptotically synchronized. 
 

 

 
 

Fig. 2. Synchronization of linearly bidirectional coupled 
modified Chua’s circuits. 

 
4. NUMERICAL RESULTS ES 

 
To verify the effectiveness of the proposed synchronization 

approaches, we did some numerical simulations. The initial 

values of drive system and response system in all simulations 
are taken ,05.0)0(,02.0)0(( 11 == yx  )04.0)0(1 =z  and 

0002.0)0(( 2 =x  ,0005.0)0(2 =y  )0004.0)0(2 =z  
respectively. Due to the Theorem 1 and by selecting 

}1,1,1{diagP = , 01.0=ε  and the systems parameters 
10=p  and 7/100=q , we can choose coupling parameters 

,22111 == kk ,32212 == kk  12313 == kk  which can 
satisfy the inequalities (14), (15) and (16). The synchronized 
states of the drive and response systems and error trajectories 
are shown in Fig.2. 

Selecting the matrix 02 =K , the unidirectional coupled 
modified Chua’s circuits can be synchronized by choosing 

,211 =k ,312 =k 113 =k . As it is shown in Fig. 3, the states 
of two uncertain modified Chua’s circuits are synchronized. 
Due to the inequalities (18) or (19) for unidirectional method, 
we can choose 02 =K , ,111 =k  ,3012 =k  3013 =k . The 
simulation results are shown in Fig.4. 

Comparing Figs. 3 and 4, we can see that with larger values 
of coupling parameters, the states are being synchronized 
more quickly. 

 

 

 
 

Fig. 3. Synchronization of linearly unidirectional coupled 
modified Chua’s circuits. 
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To verify the robustness of the proposed methods in 
presence of noise, white Gaussian noise with mean 0 and 
variance 01.0  is added to the drive system states. The 
coupling parameters are taken ,22111 == kk ,32212 == kk  

12313 == kk  in bidirectional coupling and 02 =K , 
,211 =k  ,312 =k  113 =k  in unidirectional coupling. As it 

is shown in Figs. 5 and 6, both methods are stable and the 
error values are bounded. 
 

5. CONCLUSION 
 

In this paper the unidirectional and bidirectional 
synchronization methods have been developed and applied to 
a coupled modified Chua’s circuits. Based on Lyapunov 
stability theorem and linear matrix inequality the values of 
coupling parameters are derived. Finally the numerical results 
are presented to verify and to compare the proposed methods. 
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Fig. 4. Synchronization of linearly unidirectional coupled 
modified Chua’s circuits with large value of coupling 

parameters. 

 
 

Fig. 5. Synchronization of linearly unidirectional coupled 
modified Chua’s circuits in presence of noise. 

 

 
 

Fig. 6. Synchronization of linearly bidirectional coupled 
modified Chua’s circuits in presence of noise. 
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