
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Implementation of Hardware RAID and LVM-based Large Volume Storage on
Global Data Center System of International GNSS Service

Daekyu Lee*, Sungki Cho*, Jonguk Park* and Pilho Park*
* Korea Astronomy and Space Science Institute, Daejeon, Korea

(Tel : +82-42-865-3245; E-mail: picchi@kasi.re.kr)

Abstract: High performance and reliability of the storage system to handle a very large amount of data has been become very
important. Many techniques have been applied on the various application systems to establish very large capacity storage that
satisfy the requirement of high I/O speed and physical or logical failure protection. We applied RAID and LVM to construct a
storage system for the global data center which needs a very reliable large capacity storage system. The storage system is
successfully established and equipped on the latest Linux application server.

Keywords: : RAID, LVM, Linux, Large Capacity storage

1. INTRODUCTION

Recently, Korea Astronomy and Space Science Institute

(KASI) has been developed and launched IGS(International
GNSS Service) Global Data Center(GDC). IGS organizes the
network of more than 380 international GPS stations and their
data. IGS GDC receives and archives all the international GPS
data and IGS products from the early 90’s. GDC opens its data
server for downloading all the archived IGS data for the
international engineering and scientific user communities.
Currently, the amount of data in GDC is more than 3 terabytes
and GDC archives data everyday continuously.

To handle and store the large amount of data, a stable large
capacity storage system and an appropriate control software
system are required. The reliability and flexibility of the
storage system can be enhanced by RAID(Redundant Array of
Independent Disks) and LVM(Logical Volume Manager). The
large capacity storage system can be categorized into the three
systems: DAS(Direct Attached Storage), NAS(Network
Attached Storage) and SAN(Storage Area Network). In DAS,
storages are directly connected into a single server. Networked
workstations or clients access to DAS only through the server
attached on storage. DAS can be controlled by the network
operating system of the server attached on DAS. DAS does
not provide remote connectivity or common storage for
various platforms. NAS is a dedicated shared storage solution
that attaches to a network topology, becoming immediately
and transparently available as a network resource for all
clients. NAS is platform- and operating system independent. A
NAS device is typically a stand alone and high-performance
single-purpose system. The advantage of NAS over DAS is
performance and connectivity. For the case of adding storage,
NAS solution is simpler and less expensive, while it is
dependent on network bandwidth and single point of failure. A
Storage Area Network (SAN) is a network for storage
subsystems connected to one or more servers. SAN
connectivity is accomplished by using a high-speed protocol
such as Fibre Channel or iSCSI(Internet SCSI). SAN is
independent on the Local Area Network (LAN). SAN is a
flexible and scaleable storage system. Also, SAN supports
heterogeneous server access and storage mirroring in a remote
location to ensure data integrity in case of disaster. However,
the cost of SAN is very high [2].

As stated above, there are various methods to improve a
reliability and efficiency of a storage system. Also, the many
researches and developments are on going to improve a
performance of the storage system. It is noted that the high
performance of a storage system can be achieved only when

the appropriate methods are applied to the system. We
selected DAS for GDC storage system that equipped Redhat
Enterprise Linux ES4(released in February, 2005) as an
operating system(OS). Many storage systems have been
established by using the various techniques. However, it is
very hard to find the case that based on the latest version of
server hardware and OS.

In this paper, we present the implementation of RAID and
LVM for the high performance storage system with the latest
server and OS.

2. RAID

RAID stands for “Redundant Array of Inexpensive Disks”,

and is meant to be a way of creating a fast and reliable
disk-drive subsystem out of individual disks. The basic idea of
RAID is to combine multiple small and independent disk
drives into an array of disk drives which yields performance
exceeding that of a Single Large Expensive Drive (SLED).
Additionally, this array of drives appears to the computer as a
single logical storage unit or drive [1-2].

The Mean Time Between Failure (MTBF) of the array will
be equal to the MTBF of an individual drive, divided by the
number of drives in the array. Because of this, the MTBF of
an array of drives would be too low for many application
requirements. However, disk arrays can be made fault-tolerant
by redundantly storing information in various ways [3-4].

Fundamental to RAID is “striping”, a method of
concatenating multiple drives into one logical storage unit.
Striping involves partitioning each drive’s storage space into
stripes which may be as small as one sector (512 bytes) or as
large as several megabytes. These stripes are then interleaved
round-robin, so that the combined space is composed
alternately of stripes from each drive.

In data intensive environments and single-user systems
which access large records, small stripes (typically one
512-byte sector in length) can be used so that each record will
span across all the drives in the array, each drive storing part
of the data from the record. This causes long record accesses
to be performed faster, since the data transfer occurs in
parallel on multiple drives [3].

There are a variety of different types and implementations
of RAID, each with its own advantages and disadvantages. For
example, there are levels such as 0, 1, 2, 3, 4, 5, 6, 7, 10, 50,
0+1 and others. Most, but not all levels of RAID offer
redundancy against disk failure. Of those that offer
redundancy, RAID 1 and RAID 5 are the most popular.
RAID-1 offers better performance, while RAID 5 provides for

1553

more efficient use of the available storage space. Another
level, especially RAID level 0 is often combined with RAID
level 1(RAID 0+1). Of those that offer non-redundancy,
RAID-0 is the most popular. Here we explain for four case
levels with pictures. Other things omit. Also RAID is
classified into two large groups by hardware RAID and
software it [3-5].

2.1 RAID Levels Fig 3 RAID 5

 (1) RAID 0
(4) RAID 0+1 RAID Level 0 is not redundant, hence does not truly fit the

"RAID" acronym. In level 0, data is split across drives,
resulting in higher data throughput. Since no redundant
information is stored, performance is very good, but the failure
of any disk in the array results in data loss. This level is
commonly referred to as striping, as shown in Fig. 1 [3-6].

As shown in Fig. 4, RAID 0+1 is implemented as a
mirrored array whose segments are RAID 0 arrays. RAID 0+1
has the same fault tolerance as RAID level 5 and has the same
overhead for fault-tolerance as mirroring alone. High I/O rates
are achieved thanks to multiple stripe segments. Excellent
solution for sites that need high performance but are not
concerned with achieving maximum reliability. But RAID 0+1
is not to be confused with RAID 10. A single drive failure will
cause the whole array to become, in essence, a RAID Level 0
array. This level is very expensive and high overhead. All
drives must move in parallel to proper track lowering
sustained performance. And level 0+1 has very limited
scalability at a very high inherent cost [5].

Fig. 1 RAID 0

(2) RAID 1
RAID Level 1 provides redundancy by writing all data to

two or more drives. The performance of a level 1 array tends
to be faster on reads and slower on writes compared to a single
drive, but if either drive fails, no data is lost. This is a good
entry-level redundant system, since only two drives are
required; however, since one drive is used to store a duplicate
of the data, the cost per megabyte is high. This level is
commonly referred to as mirroring, as shown in Fig. 2 [3-6].

Fig. 4 RAID 0+1

2.2 Hardware RAID vs. Software RAID

There are two possible RAID approaches: Hardware RAID

and Software RAID. The hardware-based system manages the
RAID subsystem independently from the host and presents to
the host only a single disk per RAID array. Software RAID
implements the various RAID levels in the kernel disk (block
device) code. It offers the cheapest possible solution [9].

Just like any other application, software-based arrays

occupy host system memory, consume CPU cycles and are
operating system dependent. By contending with other
applications that are running concurrently for host CPU cycles
and memory, software-based arrays degrade overall server
performance. Also, unlike hardware-based arrays, the perfor-
mance of a software-based array is directly dependent on
server CPU performance and load.

Fig. 2 RAID-1

(3) RAID 5
RAID Level 5 is similar to level 4, but distributes parity

among the drives. This can speed small writes in
multiprocessing systems, since the parity disk does not
become a bottleneck. Because parity data must be skipped on
each drive during reads, however, the performance for reads
tends to be considerably lower than a level 4 array. RAID 5's
principle advantage over mirroring is that it offers redundancy
and protection against single-drive failure, while offering far
more storage capacity when used with three or more drives.
The cost per megabyte is the same as for level 4. This level is
shown in Fig. 3 [3-6].

Except for the array functionality, hardware-based RAID
schemes have very little in common with software-based
implementations. Since the host CPU can execute user
applications while the array adapter's processor simultaneous-
ly executes the array functions, the result is true hardware
multi-tasking. Hardware arrays also do not occupy any host
system memory, nor are they operating system dependent.

Hardware arrays are also highly fault tolerant. Since the
array logic is based in hardware, software is not required to
boot. Some software arrays, however, will fail to boot if the
boot drive in the array fails. For example, an array
implemented in software can only be functional when the
array software has been read from the disks and is
memory-resident. What happens if the server can’t load the
array software because the disk that contains the fault tolerant
software has failed? Software-based implementations

1554

4. STORAGE SYSTEM COMBINED HAREWARE
RAID 5 AND LVM 2

4

commonly require a separate boot drive, which is not included
in the array [3, 6].

3. LVM .1 Hardware and Software Spec. of Storage System

 Hardware used in implementation of the system combined
hardware RAID 5 and LVM 2 is as follows. There are server
and storage device. The server model is PowerEdge 2850 by
DELL Inc.. Its specification is as shown in Table 1.

LVM is a Logical Volume Manager for the Linux operating
system as shown in Fig. 5. Logical volume management
provides a higher-level view of the disk storage on a computer
system than the traditional view of disks and partitions. This
gives the system administrator much more flexibility in
allocating storage to applications and users. Storage volumes
created under the control of the logical volume manager can
be resized and moved around almost at will, although this may
need some upgrading of file system tools. The logical volume
manager also allows management of storage volumes in
user-defined groups, allowing the system administrator to deal
with sensibly named volume groups such as “development”
and “sales” rather than physical disk names such as “sda” and
“sdb”. According to existing research, it can take advantage of
actively LVM because degradation is little even if use LVM
[8].

Table 1 Spec. of server used in implementation.

Device Name Specification
Processor
- 2×Intel XeonTM 3.4GHz/1M, EM64T, 800MHz FSB

SCSI Controller
- LSI53C1030 Dual channel U320 SCSI

Internal RAID Card PERC4e/Di with 256MB cache
NIC Dual embedded Gigabit NICs - Intel 82541

Memory 2GB

The storage model is PowerVault 220S by DELL Inc. as
shown in Table 2. It has applied the RAID 1.

Table 2 Spec. of storage used in implementation.

Device Name Specification
RAID controller
card

Leverages PERC 4
Dual channel and Quad Channel

Drive Bays Up to 14 1” LVD Ultra U320 SCSI
HDD (146GB×14) ×4 = 8TB

PowerVault 220S SCSI enclosures can be attached to one

server in a 14-drive joined-bus configuration.
Software used in implementation of this system is as shown

in Table 3. Here, LVM2 has been included on the operating
system. The storage has applied hardware RAID 5.

Fig. 5 Logical Volume Manager

There are now two version of LVM for Linux:

LVM 2 is the latest and greatest version of LVM for Linux.
LVM 2 is almost completely backward compatible with
volumes created with LVM 1. The exception to this is
snapshots. Users must remove snapshot volumes before
upgrading to LVM 2. LVM 2 uses the device mapper kernel
driver. Device mapper support is in the 2.6 kernel tree and
there are patches available for current 2.4 kernels. LVM 1 is a
mature product that has been considered stable for a couple of
years. The kernel driver for LVM 1 is included in the 2.4
series kernels, but this does not mean that all 2.4.x kernel is up
to date with the latest version of LVM.

Table 3 Software used in implementation

Software Version
Operating System Redhat Enterprise Linux ES4
Linux Kernel 2.6.9
LVM2 1.0.8
OS File System ext3
Storage File System xfs

4.2 Implementation of Storage System
The Volume Group Descriptor Area (VGDA) functions

similar to the partition table for LVM. It is stored at the
beginning of each physical volume. The VGDA consists of the
following information : one PV descriptor, one VG descriptor,
the LV descriptors and several PE descriptors.

The Volume Group(VG) is the highest level abstraction
used within the LVM. It gathers together a collection of
Logical Volumes and Physical Volumes into one administra-
tive unit. A Physical Volume(PV) generally refers to the hard
disk partitions or a device that looks (logically) similar to a
hard disk partition such as a RAID device. One or many
physical volumes make up a Logical Volume(LV) . In LVM, a
logical volume is similar to a hard disk partition in non-LVM
systems. The logical volume can contain a file-system e.g.
/home or /usr. Each physical volume is divided chunks of data,
known as physical extents(PE), these extents have the same
size as the logical extents for the volume group. Each logical
volume is split into chunks of data, known as logical
extents(LE). The extent size is the same for all logical
volumes in the volume group [4, 7-8].

When the system boots, the LVs and the VGs are activated
and the VGDA is loaded into memory. The VGDA helps to
identify where the LVs are actually stored. When the system
wants to access the storage device, the mapping mechanism
(constructed with the help of VGDA) is used to access the
actual physical location to perform I/O operation [7].

Before installing LVM, there are some prerequisites :
kernel should have compiled and the LVM module configured
because of a kernel limitation of capacity per block device.
How to apply with LVM is as follows.

1555

(1) Configure the kernel
This can be done as follows :
cd /usr/src/kernels/2.6.9
make menuconfig

under the submenu :
Device drivers Block device

enable the following a option :
[*] Support for Large Block Devices

where * denotes the selection sign.
And under the submenu :
Device drivers SCSI device support SCSI low-level
drivers

enable the following three options :
[*] LSI Logic New Generation RAID Device Drivers
<M> LSI Logic Management Module (New Driver)
<M> LSI Logic MegaRAID Driver (New Driver)

where M represents the module sign.
Also under the submenu :
File systems

enable the following a option :
<M> XFS filesystem support

(2) Check the mount of disk space free on your drive
df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda5 131G 8.9G 115G 8% /
/dev/sda1 99M 20M 75M 21% /boot
/dev/sdb1 683G 0 683G 0% /gdcdata1
/dev/sdc1 683G 0 683G 0% /gdcdata2
…
/dev/sdi1 683G 0 683G 0% /gdcdata8

(3) Change LVM partition type on your hard disk
Use fdisk or any other partition utility to change the LVM
partition type. The partition type of linux LVM is 8e.

fdisk /dev/sdb
 press p (to print the partition table)
 and t (to change partiton’s system id)

After the change of the Linux LVM partition type. Print the
partition table. It will look something like this :

Device Boot Start End Blocks Id System
/dev/sdb1 * 1 89173 716282091 8e Linux LVM

Others is a similar to above.

(4) Create physical volumes

 # pvcreate /dev/sdb1
pvcreate -- -physical volume “/dev/sdb1” successfully created

…
pvcreate /dev/sdi1
pvcreate -- -physical volume “/dev/sdi1” successfully created

The above command creates a volume group descriptor at
the start of the partition.

(5) Create volume groups

Create a new volume group and add the two physical

volumes to it in the following way.

vgcreate VolGroup00 /dev/sdb1 … /dev/sdi1
vgcreate- -- INFO: using default physical extent size 4 MB
vgcreate- -- INFO: maximum logical volume size is 255.9Gigabyte
vgcreate- -- doing automatic backup of volume group “VolGroup00”
vgcreate- -- volume group “VolGroup00” successfully created and

activated

This will create a volume group named VolGroup
containing the physical volumes from /dev/sdb1 to
/dev/sdi1. We can also specify the extent size with this
command if the extent size of 4MB is not suitable for our
purpose.
Activate the volume groups using the command

vgchange -ay VolGroup00

The command “vgdisplay” is used to see the details
regarding the volume groups created on system.

vgdisplay

(6) Create logical volumes

The lvcreate command is used to create logical volumes in
volume groups.

lvcreate –L 5.33T –n LogVol00 VolGroup00

(7) Create a file system

Now you need to build a filesystem on this logical volume.
We have chosen to make the xfs journalling filesystem on
the logical volume.

mkfs.xfs /dev/VolGroup00/LogVol00

Mount the newly created filesystem using the mount
command.

mount -t xfs /dev/VolGroup00/LogVol00 /gdcdata

(8) Add entries to /etc/fstab
Add the following entry to /etc/fstab so that the filesystem
is mounted at boot.

/dev/VolGroup00/LogVol00 /gdcdata xfs defaults 1 2

Copy the recompiled kernel if you have not replaced your
original kernel with it yet so u have the option of using
LVM or not using it.

(9) Verify VG and LV

vgdisplay
--- Volume group ---
VG Name VolGroup00
Format lvm2
Metadata Areas 8
Metadata Sequence No 2
VG Access read/write
VG Status resizable
…
VG Size 5.34 TB
PE Size 4.00 MB
Total PE 1398968
Alloc PE / Size 1397228 / 5.33 TB
Free PE / Size 1740 / 6.80 GB

lvdisplay

1556

--- Logical volume ---
LV Name /dev/VolGroup00/LogVol00
VG Name VolGroup00
…
LV Size 5.33 TB
Current LE 1397228
…

As we can see from the above discussion, LVM is quite

extensible and straightforward to use. After the volume groups
have been set up, it is easy to resize logical volumes as per
requirements. As in steps above, total size of LV is 5.33TB.
Total size was reduced because of RAID 5.

5. CONCLUSION

We composed storage system of vast capacity by using

hardware RAID5 and LVM with the latest Linux kernel. The
storage system is currently used for the data server of IGS
Global Data Center in KASI. The presented storage system in
this paper was composed by using DAS. More flexibility of
storage size and protection may be achieved by NAS and SAN
system.

ACKNOWLEDGMENTS

This work was supported by the Korea Research Council of

Fundamental Science & Technology.

REFERENCES

[1] David A Patterson, Garth Gibson, Randy H Katz, “A

Case for Redundant Arrays of Inexpensive
Disks(RAID),” Proc. of the ACM SIGMOD
international conference on Management of data, pp.
109~116, 1998.

[2] Technical Support, SMS Data Products Group. Inc.,
http://www.sms.com/data.htm.

[3] http://www.staff.uni-mainz.de/neuffer/scsi/what_is_raid.
html.

[4] The Linux Documnetation Project, http://www.tldp.org/
HOWTO/Software-RAID-HOWTO.html.

[5] Advanced Computer & Network Corporation, “Get to
Know RAID,” http://www.acnc.com/html.

[6] AJ Lewis, “LVM HOWTO,” http://www.tldp.org/
HOWTO/LVM-HOWTO/, Red hat, Inc., 2004.

[7] The Linux Gazette, http://www.linuxgazette.com/issu-
e84/vinayak.html.

[8] Michael Hasenstein, “WHITEPAPER The Logical
Volume Manager (LVM),” SuSE, Inc., 2001.

[9] Red Hat Linux Customization Guide, Red Hat, Inc.,
http://www.redhat.com/docs/manuals/linux/RHL-9-Man
ual/custom-guide/index.html, 2003.

1557

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

