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1. INTRODUCTION 

  
Almost all of studies of sliding mode control (SMC) have 

been proposed in the continuous-time domain [1-2]. In the 
actual system, however, controllers are implemented in the 
discrete-time domain since they use microprocessors and/or 
digital computers. Recently, discrete-time sliding mode 
control (DSMC) has been studied extensively to address 
various controllers using specific principles [3-6]. However, 
the research of discretizing a continuous-time SMC for digital 
implementation has not been fully explored. Furthermore, it is 
also well known that a control system designed in the 
continuous-time domain may become unstable after sampling. 

Recently chaotic behaviors were found in discretizing 
continuous SMC systems by X. Yu[7-8]. Yu and Chen 
proposed the the sufficient conditions for the discretized 
system to be GUUB[9] . But these studies can be only applied 
under the nonexistence of external disturbances. 

In this paper, therefore, a novel sufficient condition of 
discretized equivalent control based sliding mode controller 
(SMC) for a second-order system with external disturbance to 
be GUUB is proposed. The proposed stability condition 
guarantees that the system state is always GUUB in the 
presence of disturbance. The ultimate bounds of the system 
state variables are also derived. Finally, simulation results are 
presented to show the effectiveness of the proposed method. 
 
 

2. DISCRETIZATION OF AN EQUIVALENT 
CONTROL BASED SECOND-ORDER SMC 

 
Consider a second-order linear plant of the following form   
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where 2x R∉ is the state vector, 1u R ∉  is the system 

input, and 1 2,a a   are elements of a system matrix. Let the 

sliding surface be [ ]1
Tc x c xσ = =  1 , where 1 0c > is 

assumed to be designed such that that sliding dynamics, 
0σ = , are asymptotically stable. From 0σ = , we can easily 

obtain the equivalent control law as 
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From the sliding mode existence condition, 0σσ < , we have 
the following equivalent control based SMC: 
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where 0α > is a control gain, and sgn( )⋅ is a signum function. 

Clearly Tc b  is nonsingular. 
To discretize the overall system, we convert the 

continuous-time system (1) under the zero-order hold (ZOH) 
to the discrete-time system 
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h  is a sampling period, and the index k  indicates the 
k − th sample. 

As the system state ( )x k  evolves, the switching function 

sgn( ( ( )))x kσ forms a sequence of binary values of 1− and 1+ . 

For simplicity, we denote sgn( ( ( )))x kσ as { 1, 1}ks ∈ −   . Then 

the discretized system can be described by  
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where 0
hAh A Te d bc Ae τ τΦ = − ∫ , 0

h Ae d bτ τΓ = ∫ .   

To calculate Φ and  Γ , the matrix Ahe  is derived as 
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where 2 / 2aβ = , 2
1 2(1/ 2) 4a aζ = − . 

 

If 2
1 24 0a a− > , then 1, , ,v d γ      and 2γ   can be derived 

as 
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Using above equations, the discretized second-order 

dynamics with external disturbance can be rewritten as 
 

1 1 2 1( 1) ( ) ( ) ( ),k dx k x k x k s w kν γ α+ = + − +    (11) 

2 2 2( 1) ( ) ( )k dx k dx k s w kγ α+ = − + ,          (12) 

 

where dw is the external disturbance with mean value dm and it 

is assumed that there exists a constant vector nξ ∈ ℜ  such 

that | ( ) |d dw k m kξ−  <   ∀ , where .1,2, ,k n=  
 

 
3. STABILITY CONDITION OF DISCRETIZED 

SMC 
 

Generally, the asymptotic stability can be guaranteed if the 
sliding mode controller with a constant control gain is 
implemented in the continuous-time domain. For the 
discrete-time system, however, the ultimate boundedness can 
be ensured. In the following theorem, we derive conditions for 
the stability of the closed-loop system with the discretized 
equivalent control based SMC (4).   

 
Theorem 1: For the discretized systems (11) ~ (12) with the 
discretized equivalent control based SMC (4), the overall 
system is globally uniformly ultimately bounded (GUUB) if  

 
| | 1d  < ,                       (13) 
 

and 
 

2 1

(1 ) | | )
(1 )

d v mdd
α ξ

νγ γ
   

− +>   ( +
− − −

.        (14) 

  
Furthermore, the ultimate bounds of the system state variables 
are given by 
 

1
1 2

1
( )(| | | | )lim | ( ) |1 1 | |

(| | ),

d

d

c mx
dk

m

ν γ α ξγ α

ξ

− 
  
 

− + +∞  ≤ +
−→∞

                        + +

   (15) 

 

2
2

| | | |
lim | ( ) |

1 | |
dm

x
k d

γ α ξ
 

+ +
∞   ≤  

→∞ −
.            (16) 

 
Proof:  From (12), if we let 0 kξ =   ∀ , it is clear that (13) 

has to be satisfied because the pole of the system (12) should 
be located inside the unit circle. It is also obvious that the 
ultimate bound of 2x  is on the equilibrium line, (11) can be 
rewritten as 
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In order to the state 1x  converges to the sliding surface, 

the last three terms of (17) should satisfy the following 
inequality:  
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Since (1 ) 0d− > and | | 1ks  = , (18) can be written finally as 
 

2 1

(1 ) | |
(1 ) d

d vG m
dαα

νγ γ
− +> = 

− − −
,            (19) 

 
where Gα  is rate for input ks and disturbance dm .  

Therefore, if we select α greater than Gα , discretized 
system can be controlled, whereas if we select α less than 
Gα discretized system becomes unstable.  

For the case of 0 kξ ≠   ∀ , phase portrait has the chattering 
phenomenon around equilibrium line. And since the value of 
Gα  is in proportion to the magnitude of disturbance, Gα is 

obtained by 2 1| (1 ) /( (1 )) | | | )dd v d mνγ γ ξ  − + − − −  ( + . 

The ultimate bound of the state 1x can be derived by 
considering the switching points – intersection of the sliding 
surface and the equilibrium lines as can be seen in Figure 1. 
Since the points are on the sliding surface and the equilibrium 
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line, 2x  should have a value of its ultimate bound, and 1x  
has to satisfy 
 

1
1 1 2( ) ( )x k c x k−= −  .                (20) 

 
Substituting (20) into (11) gives  
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From (21), therefore, the ultimate bound of 1x can be 

obtained as (15).                                   ■  
 
 

 
Fig. 1  Phase portrait for several initial conditions 

 
 

4. SIMULATION STUDIES 
 

Consider the following continuous-time system as, 

1 2 1100, 0, 1.a a c=   =   = Let 0.1h = and (0) (0.5, ).x =   0.5  

And we choose disturbance with 0.01dm = and 0ξ = . First, 

by Theorem 1, Gα is calculated as 0.68 , From Figure 2, if 

the value of α  equals Gα , then it is seen that the trajectory 
converges to one fixed point which are (0.59, 0.09)  − . If the 

value of α  is bigger than Gα , then system state approach 
some specified boundaries of system steady states as Figure 3, 
and it shows that system is stable for all values of Gαα > . 

However, system is unstable for all values of Gαα < . 
We now look at another interesting phenomenon. Let 

0.5h = and (0) (6.0, )x =   6.0 . And we choose disturbance with 

0.5dm = and 0.17ξ = . First, by Theorem 1, the Gα is 24.3 . 
For the first case of 25α = , the theoretical values of the 
boundary is 1| | 5.38x  < , 2| | 4.94x  < . And as can be seen in 
Figure 5, the states are uniformly bounded by estimated 

boundary. For the second case of 17α = , discretized system 
becomes unstable as Figure 6. 
 

 
Fig. 2  Phase portrait for Gαα =  

 

 
Fig. 3  Phase portrait for Gαα >  

 

 
Fig. 4  Phase portrait for Gαα <  
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Fig. 5  Phase portrait for 25α =  

 

 
Fig. 6  Phase portrait for 17α =  

 
 

5. CONCLUSION  
 

In this paper, a condition of discretized equivalent control 
based sliding mode controller (SMC) for a second-order 
system with external disturbance to be GUUB has been 
presented. It has been shown that the system state is GUUB in 
the presence of disturbance.  
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