ICCAS2005

June 2-5, KINTEX, Gyeonggi-Do, Korea

Implementing Cipher APIs in Inter IXP 2400

Sang-Su Lee*, Min-Ho Han", and Jeong-Nyeo Kim"

* Network Security Department, ETRI, Korea
(Tel : +82-42-860-1613; E-mail: {sangsu, mhhan, jnkim}@etri.re.kr)

Abstract: In this paper, we presented our implementation of 3DES and HMAC-MDS processing functionality in Intel TP 2400
platform. It can be used as encryption and authentication engine for VPNs such as IPsec and SSL.

Keywords: Network Processor{1], DES[2], 3DES[2], MD5[3], HMAC[4], IPsec[5]

1. INTRODUCTION

For recent broadband network environment, network
devices, especially network security appliances such as
firewall, IDS(Intrusion Detection System) or IPS(Intrusion
Prevention System), and VPN gateway, need H/W based
design. NP(Network Processors) are very common solution to
reduce the processing load from the host processor and
accelerate the performance associated with networking.

In this paper, we presented the design issues to implement
the cipher module which processes cryptographic algorithms,
3DES and HMAC-MDS, in Intel 1P 2400 platform. The
module can be used for IPsec or SSL.Each paper must be
divided into two parts. The first part includes the title, authors
name, abstract and keywords. The second part is the main
body of the paper.

2. TARGET PLATFORM

ICOP 2400 is one of network processors released by Intel
and consists of 9 programmable processors: one Intel [IScale
core and 8 second-generation Microengines all on the same
die. The Intel [IScale core is an advanced Reduced
Instruction Set Computer (RISC) machine that is compliant
with ARM Architecture V5STE, general-purpose processor.
The micro-engines are RISC processors optimized for
fast-path packet processing. And, I[JP 2400 supports its own
programming languages: Microengine Assembly and
Microengine C.

Table 1 shows the major components of the I[JP 2400 and
the newly released I[P 2800 and I[JP 2850.

There are DRAM, SRAM controllers and Scratchpad
memories inside of I[/P 2400. However, each Microengine
has its own local memory, too. Among them, local memory
has the shortest access time, and we used it as main memory
for our implementation. Figure 1 shows the functional units of
the I[P 2400.

Table 1 The major components of the I[1P 2400/2800/2850.

Fesimre L0 2 LT 25 B]
Shrulr Yew BT Hr rm | Torwl WHAH £ oman | o] H £ rman |
Shoempms TerZi MM wax. | Terd B Iz ma Taed %l HHz mm

gl o e
s of 41
Sl Tt Ve Vi Ve
12 el 4 owa, | TesiiEla Fwas] | VesfiE-4 Fiasa]
(AL ALGLLE CAIGLLT
HT conire iy hL] Taw Taw
SR el a1 Tash) Tasty
TTRA N o] b a1, DDE) Tasl i, Fasies T B, Famkas
Crige Ve Ha 11 a5

374

| By

Filedia
| Dl ' - [HRA
‘]
P13, CED |DF: | oo
- x -
= — | [
i SmAM || smAamy | DEAK]
| Camtreller {1 || Coamrlier] || N Castrellernl
| 5
Pledis Secich
Frbic =
Tiwrie T
PLCT | | Frited Wiiake
Cuyina ey | Tmw
o
k.
—1 —,
aTady lh:l i KIE i | ME
X8 = | _I,I-Il- | 1n

TrLCI
Trprinpal best
O,] e

[_I T
il Ui | | mi ._| 1
| KIE | ME

i

Fig. 1 The caption should be placed after the figure.

We divided the local memory into several segments to store
data and look-up tables. For example, Sbox for DES and
T-values for MD5, a key for 3DES and a key for HMAC-MD5
are stored in proper segments.

3. Cipher API implementation in IXP 2400

3.1 Local memory Usage

The local memory inside each of Microengines has 4 bytes
width and 2560 bytes length and we divided it several
segments to store date related with each cipher algorithm. The
figure 2 shows the detailed usage of local memory in our
implementation.
3.1.1 LMIMDS5[TPADIBASE

This is the start address from which 64 bytes date obtained
by [LJOR with hash key and the constant value of 0x36363636
for HMAC-MDS is stored.

3.1.2 LMIMD5[DATABASE

This is the start address from which data is stored and its
maximum is 1536 bytes. Notice that date includes the original
information to be hashed and padding bits MD5 algorithm
requires.

3.1.3 LMIMD5OPADIBASE
This is the start address from which 64 bytes date obtained

ICCAS2005

June 2-5, KINTEX, Gyeonggi-Do, Korea

by [JOR with hash key and the constant value of 0x5c5¢5¢c5¢
for HMAC-MDS is stored.

.
L

Fig. 2 The local memory usage map.

3.1.4 LMIMD5 HASHIBASE

The result of single MDS5 is stored from this address.
Actually, the first hash result using inner pad, key, and data is
stored in it. And the next hash result using outer pad, key, and
the first hash value overrides this segment. For IPsec, upper 12
bytes out of the final hash value are used as HMAC-MD5
result.

3.1.5 LMIMDS5[KE[I[BASE
From this address, 128 bits key of HMAC-MDS5 algorithm
is stored.

3.1.6 LMIMDS5[TIBASE

The T-values defined in MDS5 algorithm are stored from this
address. For this, 256 bytes out of the local memory space are
required.

3.1.7 LM[DES[SBOLI[BASE
Sbox values defined in DES algorithm are stored from this
address. For Sbox, 256 bytes of local memory are used.

3.1.8§ LMIDESCROUND(KE[IBASE

The round keys for 3DES are stored from it. This segment
is shared with segment start from LMIMDSTOPADIBASE.
Thus, in our implement HMAC-MDS5 and 3DES are not
processed at the same time.

3.2 Implemented cipher APIs

Implemented functionalities are coded as macro function
style using I[P 2400-native macro-assembler. However, any
applications implemented using the assembler can reuse this
APIs on their purposes.

3.2.1 insert T macro function

This macro stores T-values in local memory area starting
from LMI[MDS5[T[BASE. Thus, it doesn t need to be called
in every application using our implementation for MDS5 or
HMAC-MD5.
3.2.2 gettHMACTMDJmacro function

This is the main macro to obtain HMAC-MDS5 result.
getl!MDU] is another macro which processes pure MDS5
algorithm and called by getlHMACIMDIU] macro inside.
[JORed values using 128-bit hash key and inner pad, and data

375

to be hashed are processed by get[MD[Jand its result is stored
from LMICMD5HASHIBASE. However, [JORed values with
the hash key and outer pad are stored from
LMIMDS[OPAD[BASE.

Finally, getl MD[performs hashing using the [IORed value
and previous hashing value. The first 96-bit value of the
second hashing is used for authentication in IPsec. The figure
3 shows the processing step of it.

el BEF WA

Fig. 3 Processing steps of getlHMACTMDImacro.

3.2.3 gettMD[Imacro function

This macro performs pure MDS5 hashing algorithm and
returns 128 bits hash value. In our implementation, data to be
hashed is re-arranged to big-endian order because
Microengines treat the date in big-endian manner.

3.2.4 initiateLSBO I macro function

This macro places the Sbox values from LM SBO[I[BASE
of local memory. In general, DES has 8 Sboxs and each of
them needs at least 32 bytes. Thus, 256-byte memory area is
needed.

3.2.5 trilkeylschedule macro function

This macro derives round keys of 3DES from 192 bits
original key. In IPsec, this key value would be agreed through
IKE of two peers.

This macro uses another internal macro named
keylschedule which generates round key from 64 bits key
value for DES. In detail, Let s define the 192 bits key as KE[J
and three of 64 bits segment as keyl, key2, and ket3. Then
KE[I can be considered as the concatenation of the three
segments. keylschedule macro derives round key of DES from
each of the segment, so it should be called 3 times in
trilkeylschedule as showed in figure 4.

Total size of round keys is 384 bytes. Figure 4 shows round
key generation steps.

Py -1
T U N T Lt o e .
. I
T Ve e w L [
Ao riemeier
- -
1 3 1 T
- .
= =7~ R e O
s ekl
5 "
¥ at + -
1 B - > =
T " e =
5 ol " A

Fig. 4 Processing steps of trikey[schedule macro.

3.2.6 tril DESICBC macro function

ICCAS2005

June 2-5, KINTEX, Gyeonggi-Do, Korea

This macro uses another internal macro, Cipher, which
implements pure DES encryption and decryption and returns
64 Dbits result. Cipher used round keys derived by
trilkey schedule macro and called three times by
trilDESTCBC which supports 3DES in EDE. Figure 5 shows
the processing steps.

N e &8 AP g ki
L3
T RO PR R W DET SDLAD WY ANLE
] i ’ ¥ el Sy
CER 1 " ed” Clphr
e i | —r—— — o —
il o i R el S D ¥
e — — e
L8 It
i &
LT
" LEw ’ L™ ?#. =T]
L ——— L] ————
s e
I o T
L] L
- oo ey B e

Fig. 5 Processing steps of i DESTCBC macro

4. TEST PERFORMANCE

With the cipher module explained in previous section,
we implemented IPsec VPN engine in I[P 2400, and its
performance obtained by test is summarized in table 2.
Notice that the unit of the value is Mbps.

Table 2 Test performance of IPsec module using our APIs.

| i uik il Fa £ 1] £ [L&
m DES =] 148 14 15 14 14
DES WS i 1.7 15 14 14 14

Ferr b Thesughpard somas sn PR Tams

Toim: 5k e, Pt s s L imi=D) i i ol LT85 s

5. CONCLUSTIONS

In this paper, we described our implementation of
3DES and HMAC-MDS5 functionalities in Intel I[P
2400 platform. We used local memory of each
Microengine of I[P 2400 and implemented macro
function style APIs to process the algorithms as.

REFERENCES

[1] Bill Carlson, Intel Internet Exchange Architecture and
Applications A Practical Guide to ITIP2U11] Network
Processors, Intel Express, 2003.

[2] Shneier. B., Applied Cryptography, John Wiley, N[

1994.
[31 R.Rivest, The MD5 Message-Digest Algorithm, /ET
RUC 1121, 1992.

[4] H. Krawczyk, M. Bellare, and R. Canetti, HMAC:
Keyed-Hashing for Message Authentication, [ETTIRUIC
21011 1997.

[5] S. Kent and R. Atkinson, Security Architecture for the
Internet Protocol, IETIRLIC 201, 1998.

376

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

