A CMOS Single-Supply Op-Amp Design For earing Aid Application
Soon-Suck Jarng*, Lingfen Chen** ou-Jung Kwon ${ }^{*}$
* Department of Information Control \& Instrumentation, Chosun University, Gwang-Ju, Korea
(Tel : +82-62-230-7107; E-mail: ssjarng@chosun.ac.kr)

Abstract

The hearing aids specific operational amplifier described in this paper is a single-supply, low voltage CMOS amplifier. It works on 1.3 V single-supply and gets a gain of 82 dB . The $0.18 \mu \mathrm{~m}$ CMOS process was chosen to reduce the driven voltage as well as the power dissipation.

Keywords: CMOS Operational Amplifier, Low-voltage, Single-supply

1. INTRODUCTION

Operational amplifiers are the basic building blocks in both analog and mixed-signal circuits. The operational amplifiers used in hearing aids are specially designed to meet the requirements of low voltage, single-supply, low power dissipation, high gain, etc. Because the input signal from microphone is very small, less than 1 mV , the op-amp is designed to be very sensitive to such a tiny signal. On the other hand, the op-amp should have a rail-to-rain output swing as well as a very low output impedance to avoid distortion and waste of power.

Fig. 1 The Application Schematic

2. OPERATIONAL AMPLIFIER

The op-amp consists of three stage, input stage, gain stage and output stage. The input stage is an N -channel differential pair. The gain stage is a current load common source P-channel transistor. A class AB push pull stage acted as the output buffer to deal with a small resistor load.

Fig. 2 Top level op-amp structure

2.1 Input Stage

The input signal is less than 0.01 mV . That is,

$$
\begin{align*}
& V_{c}-0.01 m V \quad V_{c} \quad V_{c}+0.01 m V \tag{1}\\
& V_{i n} \tag{2}\\
& V_{D S A T S}+V_{D S A T 1}+V_{T N} \tag{3}\\
& V_{i n}
\end{align*} V_{D D}-V_{D S A T 4}-V_{T N} .
$$

Where $V_{D S A T 5} \quad V_{D S A T 4}$ and $V_{D S A T 1}$ are the saturation voltage of transistors M5, M4 and M1. $V_{T N}$ is the threshold voltage of N channel transistor. So in the design, we do not need to take cascode in input stage to extend the common mode input range (ICMR). A regular N -channel differential pair input stage provides enough ICMR for the op-amp. We chose a carrier, Vc $=0.7 \mathrm{~V}$. Fig 2 shows the transistor level schematic. Transistors Mb1, Mb2 and the resistor Rref compose a voltage divider to provide the carrier for the circuit. Node 6 is the output to the next stage. Vsignal is the input signal.

Fig. 3 Transistor Level Schematic of Input Stage
$A_{d m}=\frac{\frac{V_{o d}}{2}}{\frac{V_{i d}}{2}}=-g_{m}\left(R_{D} / / r_{o 1}\right)$
Equation. (4) state the relationship among circuit parameters, where $V_{o d}$ is the differential mode output voltage and $V_{i d}$ is the differential mode input voltage. g_{m} is the transconductance of transistor M2, M1. R_{D} is the equivalent load resistance. To improve the gain, we
may increase the gate length of the M1 and M2, the ratio of W / L or reduce the current from current source Ib 1 .

Fig. 4 (a) AC Output Wave of Input Stage.

Fig. 4 (b) DC Output Wave of Input Stage.
Table 1 The scale of transistors.

Transistor	$\mathrm{W}[\mu \mathrm{m}]$	$\mathrm{L}[\mu \mathrm{m}]$
M1	16.30	1.00
M2	16.30	1.00
M3	23.74	1.00
M4	23.74	1.00
M5	10.63	1.00
M6	10.63	1.00
M7	10.21	1.00

Table 2 small-signal transfer characteristics

Vout/Vin	115.97
Input Resistance	$1.000 \mathrm{e}+20$
Output Resistance	565.317 k

2.2 Gain Stage

The gain stage used in the design is a regular active load common source amplifier. M11, M10, Rref2 and M9 compose a current source. The diode connection transistor M11 could be regarded as a large resister so that we can reduce the size of the resistor, Rref. M10 is exactly the same as M9 so that the current through M11 equals to the current through the transistor M8. Vinput is the output from input stage. The hearing aids are only interested in the low frequency input signals which covers between 20 Hz and 8 kHz . We found there is no phase shift when the input frequency is less then 10 E 4 Hz even we did not do any frequency compensation. Fig. 5 shows the structure of the gain stage.

The gain of active load common source transistor is determined by the transconductance of the transistor M8 and the equivalent load resistance. Equation. (4). So we can increase the gate length, the W/L to get a larger gain. Reduce current also help to do so. Fig. 6 show the frequency response of the gain stage.

Table 2 shows the small signal transfer characteristics of the gain stage. It got a gain of 92.78 at low frequency.

Table 2 small-signal transfer characteristics

Vout/Vin	92.78
Input Resistance	$1.000 \mathrm{e}+20$
Output Resistance	466.102 k

Fig. 5 Transistor Level Schematic of Gain stage

Fig. 6 (a) Amplitude-Frequency Response

Fig. 6 (b) Phase-Frequency Response

2.3 Output Stage

The desired gain of the op-amp is 80 dB . The input signal is
less than 0.01 mV . The output is

$$
V_{o c}-100 m V \quad V_{\text {OUT }} \quad V_{o c}+100 m V
$$

So a source follower was chosen to be the output stage. (Fig. 7)

Fig. 7 Transistor Level Schematic of Output Stage

Fig. 8 (a) DC Transfer Characteristic

Fig. 8 (a) AC Transfer Characteristic
Table 3 Small-Signal Transfer Characteristics

Vout/Vin	978.2 m
Input Resistance	$1.000 \mathrm{e}+20$
Output Resistance	28.23 k

3. FULL CIRCUIT SIMULATION AND TEST

Fig. 9 shows the full schematic of the op-amp. In this schematic, the voltage divider which produce the carrier was not included. The transistors M7, M6, M5 and resistor Rref compose a current source. M1, M2, M3, M4 and M5 consist a N -Channel differential pair. M5 provided a tail current. The transistor M8 is a common source amplifier with a current
source load. The transistor M10 is a source follower. All these parts are analyzed and simulated on former section. Here we tested the specifications of the op-amp.

The specifications we interested in are gain, phase margin, ICMR, Common Mode Reject rang (PRSS), output swing, Common Mode Rejection Range (CMRR) and Settling time.

Fig. 9 The Full Schematic of the Op-amp

3.1 Fre uency response

Table 4 and Fig. 10 show frequency response of op-amp The gain is 82 dB . There is enough phase margin to deal with low frequency with acceptable phase shift.

Table 4 Small-Signal Transfer Characteristics

Vout/Vin	12.25 k
Input Resistance	$1.000 \mathrm{e}+20$
Output Resistance	25.04 k

Fig. 10 (a) Amplitude-Frequency Response

Fig. 10 (b) Phase-Frequency Response

3.2 CMRR

CMRR, Common Mode Reject Range, is defined as Equation. (5). The Acm is common-mode gain and the A dm is the differential-mode gain. In fig. 11(a), we use th e absolute value.
$C M R R=\frac{A_{C M}}{A_{D M}}$

Fig. 11 (a) CMRR Amplitude-Frequency Response

Fig11 (b) CMRR Phase-Frequency Response

3.3 Output Swing

The output is between 0 V and 767 mV when the input varies in the ICMR.

Fig. 12 Output Swing.

3.4 PSRR

PSRR, Power-Supply Rejection Ratio. Assume that the chip ground is reliable. The test only on the supply. It turned out to be 125 dB at 0 dB .

Fig. 13 PSRR Amplitude Frequency Response

3.5 Settling Time

We added a tiny pulse on input. The Settling time is: Settling Time+ = 31ns;
Settling Time- $=73 \mathrm{~ns}$.

Fig14 (b) Settling Time

Table 5 Specifications.

Spec	Designed Value	Simulation Value
Gain	80 dB	82.47 dB
Settling time +	--	31 ns
Settling time -	--	73 ns
ICMR +	710 mV	710 mV
ICMR -	690 mV	690 mV
CMMR	50 dB	85 dB
PSRR +	60 dB	125.7 dB
Output Swing +	750 mV	767 V
Output Swing	0 V	0 V
Output Resistance	As small as pos sible	12.3 k
Input Resistance	Infinite	1.0 e 20
Total Power Dissipation	--	$73.1 \mu \mathrm{Watt}$

4. CONLUSION

A low voltage single-supply operational amplifier for hearing aids application was designed in this paper. By using short channel devices, it works on a 1.3 V single supply and get a gain of 82 dB . The analog circuit involved in hearing aids design contributes a lot to the high performance of the chip. We will further our research on this area.

ACKNOWLEDGMENTS

This study was supported by research fund from the ministry of commerce, industry and energy (MOCIE Korea) standardization technology development project(standardization study on digital hearing aid: project number 10016821) in 2004.

REFERENCES

[1] Phillip E. Allen, Douglas R. Holberg, "CMOS Analo g Circuit Design", Second Edition.
[2] David A Johns, Ken Martin, "Analog Integrated Circ uit Design".
[3] Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Rob ert G. Meyer, "Analysis And Design of Analog Inte grated Circuits, Fourth Edition".
rref 78 10k
m1 3155 nch $w=16 u 1=1 \mathrm{u}$ as $=21.76 \mathrm{f}$ ad $=21.7$ $6 \mathrm{f} \mathrm{ps}=18.72 \mathrm{u} \mathrm{pd}=18.72 \mathrm{u}$
$\mathrm{m} 26255 \mathrm{nch} \mathrm{w}=16 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=21.76 \mathrm{f}$ ad $=21.7$
$6 \mathrm{f} \mathrm{ps}=18.72 \mathrm{u} \mathrm{pd}=18.72 \mathrm{u}$
m3 3344 pch w $=23.70 \mathrm{u} 1=1 \mathrm{u}$ as $=32.23 \mathrm{f}$ ad $=3$
$2.23 \mathrm{f} \mathrm{ps}=26.42 \mathrm{u} \mathrm{pd}=26.42 \mathrm{u}$
m4 6344 pch $w=23.70 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=32.23 \mathrm{f}$ ad $=3$
$2.23 \mathrm{f} \mathrm{ps}=26.42 \mathrm{u} \mathrm{pd}=26.42 \mathrm{u}$
m5 5700 nch $\mathrm{w}=10.63 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=14.46 \mathrm{f} \mathrm{ad}=1$
$4.46 \mathrm{f} \mathrm{ps}=13.35 \mathrm{u} \mathrm{pd}=13.35 \mathrm{u}$
m6 7700 nch $\mathrm{w}=10.63 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=12.54 \mathrm{f}$ ad $=1$
$2.54 \mathrm{f} \mathrm{ps}=12.99 \mathrm{u} \mathrm{pd}=12.99 \mathrm{u}$
m7 8844 pch w $=10.87 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=14.78 \mathrm{f}$ ad $=1$
$4.78 \mathrm{f} \mathrm{ps}=13.59 \mathrm{u} \mathrm{pd}=13.59 \mathrm{u}$
.op
.tf v(6) vinn
.tran .01 m 5 m
.print tran $\mathrm{v}(6)$
.end
2) Gain Stage
*********** Gain stage $* ~$
.lib /ust/COMLIB/ L18.lib' nn
.option post $=2$
vdd 401.3
ib $10025 u$
vin $10 \sin (.75 .1 \mathrm{~m} 100000)$
.para $\operatorname{lm}=1 \mathrm{u}$
M1 9 1044 pch w $=46.78 \mathrm{u} 1=1 \mathrm{~m}$ as $=55.2 \mathrm{f}$ ad $=$ $55.2 \mathrm{f} \mathrm{ps}=49.14 \mathrm{u} \mathrm{pd}=49.14 \mathrm{u}$
M2 9100 nch w $=10.91 \mathrm{u} 1=1 \mathrm{~m}$ as $=12.9 \mathrm{f}$ ad $=12$.
$9 \mathrm{f} \mathrm{ps}=13.27 \mathrm{u} \mathrm{pd}=13.27 \mathrm{u}$
M3 101044 pch w $=13.56 \mathrm{u} 1=1 \mathrm{~m}$ as $=18.1 \mathrm{f}$ ad $=$ $18.1 \mathrm{f} \mathrm{ps}=15.92 \mathrm{u} \mathrm{pd}=15.92 \mathrm{u}$
.op
.tf $v(9)$ vin
.tran .01 m 5 m
.print tran $\mathrm{v}(9)$
.end
3) Output Stage

```
**** N-channel Source Follower with Bias.****
.lib /usr/COMLIB/L18.lib' nn
.option post \(=2\)
    vdd 401.3
    vin \(10 \sin (.9 .1100000) \quad\) * Input signal
* vin \(10 \mathrm{dc}=.7\)
    m 14122 nch \(\mathrm{w}=.42 \mathrm{u} \mathrm{l}=.18 \mathrm{u}\) as \(=0.15 \mathrm{f}\) ad \(=0.1\)
\(5 \mathrm{f} \mathrm{ps}=1.14 \mathrm{u} \mathrm{pd}=1.14 \mathrm{u}\)
```

```
    m2 2 3 0 0 nch w=.22u l = .18u as = 0.08f ad = 0.0
8f ps = 0.58u pd = 0.58u
    m3 3 3 0 0 nch w= .22u 1 = .18u as = 0.08f ad = 0.0
8f ps = 0.58u pd = 0.58
    m4 5 5 3 3 nch w= .22u l = . 18u as = 0.08f ad = 0.0
8f ps = 0.58u pd = 0.58
    rref 4 5 10k
    rload 2 0 8k
    .tf v(2) vin * Small signal a
nalysis
    .op
    .tran .01m 5m
    .print tran v(2)
* .dc vin 0 2 .1
* .print dc v(2)
    .end
```

4) Full Operational Amplifier
*** The Full operational amplifier $* * * * * * * * * * * *$
.lib /usr/COMLIB/L18.lib' nn
.option post $=2$
vdd 401.3
*vinn $10 \sin (.7 .01 \mathrm{~m} 100000)$
vinn $20 \mathrm{dc}=.7 \mathrm{ac}=0.01 \mathrm{~m}$
vinp 10.7
rrefl 7810 k
rref2 41180 k
ml 3155 nch $\mathrm{w}=16.00 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=21.76 \mathrm{f}$ ad $=2$
$1.76 \mathrm{f} \mathrm{ps}=18.72 \mathrm{u} \mathrm{pd}=18.72 \mathrm{u}$
$\mathrm{m} 26255 \mathrm{nch} \mathrm{w}=16.00 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=21.76 \mathrm{f} \mathrm{ad}=2$
$1.76 \mathrm{f} \mathrm{ps}=18.72 \mathrm{u} \mathrm{pd}=18.72 \mathrm{u}$
m3 3344 pch w $=23.70 \mathrm{u} 1=1 \mathrm{u}$ as $=32.23 \mathrm{f}$ ad $=3$
$2.23 \mathrm{f} \mathrm{ps}=26.42 \mathrm{u} \mathrm{pd}=26.42 \mathrm{u}$
m 46344 pch $\mathrm{w}=23.70 \mathrm{u} 1=1 \mathrm{u}$ as $=32.23 \mathrm{f}$ ad $=3$
$2.23 \mathrm{f} \mathrm{ps}=26.42 \mathrm{u} \mathrm{pd}=26.42 \mathrm{u}$
m5 5 700 nch w $=10.63 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=14.46 \mathrm{f} \mathrm{ad}=1$
$4.46 \mathrm{f} \mathrm{ps}=13.35 \mathrm{u} \mathrm{pd}=13.35 \mathrm{u}$
m6 7700 nch w $=10.63 \mathrm{u} 1=1 \mathrm{u}$ as $=14.46 \mathrm{f}$ ad $=1$
$4.46 \mathrm{f} \mathrm{ps}=13.35 \mathrm{u} \mathrm{pd}=13.35 \mathrm{u}$
m 78844 pch $\mathrm{w}=10.87 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=14.78 \mathrm{f} \mathrm{ad}=1$
$4.78 \mathrm{f} \mathrm{ps}=13.59 \mathrm{u} \mathrm{pd}=13.59 \mathrm{u}$
m 89644 pch $\mathrm{w}=47.31 \mathrm{u} \mathrm{l}=1 \mathrm{u}$ as $=55.2 \mathrm{f}$ ad $=55$.
$2 \mathrm{f} \mathrm{ps}=49.14 \mathrm{u} \mathrm{pd}=49.14 \mathrm{u}$
m9 9700 nch w $=10.63 \mathrm{u} 1=1 \mathrm{u}$ as $=12.9 \mathrm{f} \mathrm{ad}=12$.
$9 \mathrm{f} \mathrm{ps}=13.27 \mathrm{u} \mathrm{pd}=13.27 \mathrm{u}$
$\mathrm{m} 10491010 \mathrm{nch} \mathrm{w}=.42 \mathrm{u} \mathrm{l}=.18 \mathrm{u}$ as $=0.15 \mathrm{f} \mathrm{ad}=$
$0.15 \mathrm{f} \mathrm{ps}=1.14 \mathrm{u} \mathrm{pd}=1.14 \mathrm{u}$
$\mathrm{mll} 101200 \mathrm{nch} \mathrm{w}=.22 \mathrm{u} \mathrm{l}=.18 \mathrm{u}$ as $=0.08 \mathrm{f}$ ad $=$
$0.08 \mathrm{f} \mathrm{ps}=0.58 \mathrm{u} \mathrm{pd}=0.58 \mathrm{u}$
$\mathrm{m} 1211111212 \mathrm{nch} \mathrm{w}=.22 \mathrm{u} \mathrm{l}=.18 \mathrm{u}$ as $=0.08 \mathrm{f}$ ad
