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1. INTRODUCTION 
 
  The problem of the system state estimation in linear 
dynamic systems with uncertain observations is considered. 
Many techniques are available for the adaptation of systems. 
Most identification approaches can probably be applied to 
construct an adaptive mechanism. Among existing methods, 
we are particularly interested in the partitioned adaptive 
technique that is mathematically based on Bayesian estimation 
theory [1], [2]. 
 It is known that the linear filtering problem with 
unknown parameters, i.e. the adaptive filtering problem, 
reduces to a nonlinear filtering problem, which has major 
difficulties in its realization [3]. In particular, it is extremely 
difficult to assess the effect of approximations made in the 
suboptimal realization of nonlinear filters. However, 
partitioned adaptive Lainiotis-Kalman filtering constitutes a 
partitioning of the original nonlinear filter into a bank or set of 
much simpler linear Kalman filters. In other words, the 
optimal mean square estimate of state is given by a weighted 
sum of the model- or parameter-conditional estimates with 
weights representing a posteriori probabilities of unknown 
parameter [1], [4], [5]. However the Lainiotis-Kalman filter 
yields an effective estimation algorithm only for low 
dimension of the parameter vector, since it requires an 
evaluation of a posteriori probabilities at each time instance.  
 Here we also consider the estimation problem for 
dynamic systems with multi-sensory data. In recent years, 
there has been growing interest to fuse multi-sensory data to 
increase the accuracy of estimation parameters and system 
states. This interest is motivated by the availability of different 
types of sensor which uses various characteristics of the 
optical, infrared, and electromagnetic spectrums. In many 
situations, system states or targets are observed by 
multi-sensors [6], [7], [8]. The overall observations in the 
estimation process are assigned to a common target as a result 
of the association process. At that time, we need to know how 
to combine the local estimates obtained from different types of 
sensors. The well-known Millman and Bar-Shalom-Campo 
formulas for fusion of two local estimates are used in the 
estimation problems [9], [10]. In [11], we have extended these 
formulas on an arbitrary number of local estimates.  
 In this paper, we consider two types of dynamic systems. 
The first is the systems with multi-sensor environment. And, 
the second is one with observation uncertainties. For these 
systems, we propose two-step suboptimal filters based on the 

fusion formula [11], which is applied to fusion of local 
Kalman filters. The obtained filtering algorithms reduce the 
computational burden and on-line computational requirements. 
This has been achieved via the use of a decomposition of the 
observation vector into a set of subvectors of low dimension. 
The example demonstrates the efficiency and high-accuracy of 
the proposed algorithms.  
 This paper is organized as follows. In Section 2, we 
consider continuous-time dynamic systems with multi-sensor 
environment and observation uncertainties. In Section 3, the 
new suboptimal filters are derived by using the fusion formula. 
In Section 4, the proposed filters are numerically tested.  
Finally, Section 5 is the conclusion.  
 

2. LINEAR DYNAMIC SYSTEMS WITH 
MULTI-SENSOR ENVIRONMENT AND 

UNCERTAINTIES 
 

 Consider a continuous-time linear dynamic system   

. 0t,vGxFx ttttt ≥+=&   (1) 

where nR∈tx  is the state vector, nR  is an 

n-dimensional Euclidean space, ( )tt Q0,~v  is Gaussian 

white noise with zero mean and intensity tQ . Suppose that 

the observation system involves N sensors with uncertainties, 
i.e., 
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where ( )( )θ(i)
t

(i)
t R0,~w . We assume that the initial state 

( )000 P,xN~x , the system noise tv ,and the 

observation noises N,,1i,w (i)
t K=  are mutually 

uncorrelated.  The system matrixes tt G,F , and tQ are 
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completely known, and the observation matrices ( )θ(i)
tH  

and ( )θ(i)
tR  include an unknown parameter vector 

pR∈θ . 

 
2.1. Optimal Kalman Filter 
 Let assume that the parameter θ  is completely known, 

i.e., ,*θθ =  then the Kalman filter (KF) gives optimal 

mean square estimate KF
tx̂ of state tx based on the overall 

observations tY , 
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However in the cases of limited computing and 
communication resources, and large number of sensors, the 
KF can not produce well-timed results as it simultaneously 
processes the overall measurements tY  at each time instant 

t to calculate the current estimate KF
tx̂ . Therefore, if 

dimension 

( ) N1t mmYdim ++= L .          (5) 

of the overall observation vector is large, then the KF is 
unpractical.  

 

2.2. Optimal Adaptive Lainiotis-Kalman Filter  

 In structure adaptation, two filters are primarily used for 
the system (1), (2). Both of these filters are based on the 
Bayesian approach in which the unknown parameter  θ  is 

assumed to be random with a prior known probability ( )θp . 

In the first filter, θ  is treated as a random constant vector 

such as θ== 0t z,0z& . And the system (1) together 
with the assumption can be reformulated as the nonlinear 

model for the composite state vector [ ]Ttt zx , and the 
suboptimal nonlinear filtering procedures can be applied to 

estimate the composite state [ ]Ttt zx ,which contains 

θ=tz  as its component. However, it is difficult to 
estimate the effect of approximations made in the suboptimal 
realization of nonlinear filters. The second filter represents the 
adaptive Lainiotis-Kalman filter (LKF), which separates the 
filtering process tx  from the identification of the unknown 

parameter θ  [1], [4], [5]. If it takes only a finite set of 
values  
 

{ }N1 ,, θθθ K∈ .        (6) 
 
then the optimal state estimate LKF

tx̂  represents weighting 

sum of local Kalman filters  ( )i
KF
tx̂ θ matched to the linear 

system (1), (2) at fixed iθθ = , i.e., 
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where the weights   
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represent a posteriori probabilities of iθ  given 

{ }.ts0:YY s
t
0 ≤≤= As was already said in the 

introduction, the LKF is effective only for low dimension of  

parameter pR∈θ , since it requires calculations of a 

posteriori probabilities ( )t
0i Yp θ  at each time instance 

0t > .  
 In this paper we develop alternative two-stage suboptimal 
filters (TSSF) for the system (1) with multi-sensor 
environment (2), when parameter θ  is known and   
unknown. These filters do not require calculations of  a 
posteriori probabilities ( )k

i
(i)
k ypc~ θ=  at each time 

instance. The obtained filtering algorithms reduce the 
computational burden and on-line computational requirements. 
It is achieved via a decomposition of the overall observation 
vector (3) into a set of subvectors of low dimension. 

3. TWO-STEP SUBOPTIMAL FILTERS 

 The new filtering algorithms consist of two steps. On the 
first step we determine local Kalman estimates 

(filters) N,1,i,x̂ (i)
t K= . And on the second step, these 

estimates are fused into overall suboptimal state estimate.  

 

3.1. Local Kalman Filters for Dynamic Systems with 

Multi-Sensors Environment 

 Consider dynamic system (1), (3) including N sensors  

with known parameter *θθ = . According to (1) and (3), we 
have N  dynamic subsystems ( N,1,i K= ) with state 

vector nR∈tx  and observation subvector imR∈(i)
ty : 

,vGxFx ttttt +=&  .wxHy (i)
tt
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t
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where the number of subsystem i  is fixed. 

 Next, let us denote the estimate of the state tx based on 

the individual sensor (i)
ty   by (i)

tx̂ . To find (i)
tx̂  we can 

apply the optimal KF to the subsystem (13) [1], [3].  We have 
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Thus we have N  local Kalman estimates (LKEs) 

(N)
t

(1)
t x̂,,x̂ K .                            (11) 

based on the individual sensors (1)
ty ,…, (N)

ty , respectively, 
and corresponding local error covariances (LECs) 

(NN)
t

(11)
t P,,P K . (12) 

 

3.2. Local Kalman Filters for Dynamic Systems with 
Observation Uncertainties 

 Consider dynamic system (1), (2) with one sensor 
( 1N = ) containing unknown parameter θ . We have 

,vGxFx ttttt +=&  ( ) .wxHY tttt += θ      (13) 

where ( ) ( )θθ (1)
tt

(1)
ttt HH,yY,x =∈=∈ 1mn RR , 

{ }N1 ,, θθθ K∈ . 

Using the Kalman filter for the system model (13) at the fixed 

iθθ = , we have N  local Kalman estimates 
 

( ) N,1,i,x̂x̂ it
(i)
t K=≡ θ        (14) 

 
and associated local error covariances 
 

( ) .N,1,i,PP it
(ii)
t K=≡ θ         (15) 

 
3.3. Fusion of Local Kalman Estimates 
 Suppose we have N  LKEs (11) or (14) with the 
corresponding LECs (12) or (15). Then the overall 
suboptimal linear estimate of state is given by 
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where nI is the nn × init matrix, and (N)
t

(1)
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nn ×  weight matrices determined from the mean square 
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The following theorem completely defines the estimate sub
tx̂   

and its error covariance 
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t x̂,,x̂ K  be the local Kalman 

estimates of an unknown state tx  . Then the weight matrices 
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t
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Corollary 1. If (N)
t

(1)
t x̂,,x̂ K  are unbiased estimates then 

the suboptimal estimate sub
tx̂   in (16) is unbiased. 

 

Corollary 2. The  error covariance sub
tP   is given by 
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 In the particular case at 2N = ,  the formulas (16), (19) 
are reduced to the Bar-Shalom-Campo formulas [10]: 
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If these two estimates are uncorrelated, i.e., 0P (12) = , then 
the formulas (11) give the Millman formulas [4]: 
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As we see the unknown weights (i)
tc are satisfied to the linear 

algebraic equations (19) with coefficients depending on the 

LECs N.,1,ji,,P(ij)
t K=   Usually in various estimation 
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problems the LECs N,1,i,P(ii)
t K= are known. For 

instance, in linear filtering problems 3.1 and 3.2 the LECs 
(ii)
tP  are described by the Kalman filter equations [see (12) 

or (15)]. However the cross-covariances ji,P(ij)
t ≠ ,  are 

usually unknown and it should be determined in each  
specific filtering problem. 
 
3.4. Equation for Cross-Covariance in Filtering Problem 
with Multi-Sensors Environment 

 In the filtering problem (1), (3), (4) the cross-covariance 
(ij)
tP , where ji ≠ , satisfies to the following differential 

equation: 
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where N,1,i,P (ii)
t K=  represent the LECs (12). 

 Thus the LKEs (11), LECs (12), and equations (16), (19), 
(22) completely define the two-steps suboptimal filter (TSSF) 
for dynamic system with multi-sensors environment (1), (3), 
(4). 

 
3.5. Equation for Cross-Covariance in Adaptive Filtering 
Problem 
 In the adaptive filtering problem (1),(2),(6) the 

cross-covariance ji,P(ij)
t ≠   also satisfies to the equation 

(22) with matrices 
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t
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t
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and LECs (ii)

tP  (15). 
 
Thus the LKEs (14), LECs (15), and equations (16), (19), (22) 
completely define TSSF for dynamic system with observation 
uncertainties (1), (2), (6). 

 
Remark 1. The LKEs are separated, i.e., each local estimate 

(i)
tx̂  is found independently of other estimates. Therefore, the 

LKEs can be calculated in parallel. The proposed TSSF is also 
robust, since it can be corrected even if one of the parallel 

local estimates (i)
tx̂  diverges. In this case, the corresponding 

weight matrix (i)
tc  in (16) will tend to zero, thereby 

indicating that the diverging local estimate (i)
tx̂  will be 

discarded in the weighting sum. 
 

Remark 2. We may note, that the all covariances (ij)
tP , and 

the weights (i)
tc  may be pre-computed, since they do not 

depend on the measurements tY , but only on the noises 

statistics (i)
tt R,Q , and the system matrices (i)

ttt H,G,F , 
which are the part of system and measurement model (1), (2). 
Thus, once the measurement schedule has been settled, the 
real-time implementation of the TSSF requires only the 
computation of the LKEs and the final suboptimal estimate 

sub
tx̂ . 

 
Remark 3. In case of one sensor ( 1N = ) and completely 

known parameter *θθ = , the TSSF coincides with KF. 
 
Remark 4. The TSSF can also be used for distributed parallel 
data fusion system, provided better communication system 
and individual measuring device with processing capabilities. 

 
4. ESTIMATION OF DAMPER HARMONIC 

OSCILLATOR MOTION 
 
In this section, we verify TSSFs for model of the harmonic 
oscillator [10] 
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where [ ]Tt2,t1,t xxx =  and t1,x is position, and 

t2,x is velocity, ( )q,0~vt ,  ( )000 P,xN~x . 

We consider two observation models: 

 

4.1. Two sensors for measuring a position 

 In the first observation model position t1,x is only 

measured by two different sensors which are given 
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where ( )1
(1)
t r,0~w  and ( )2

(2)
t r,0~w are uncorrelated 

white noises. 

 For this case two filters for the system model (24), (25) are 
considered: 

 

A). The KF based on the overall observation model (3), 
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B). The TSSF based on the Bar-Shalom-Campo formulas (21), 
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where (1)
tx̂  and (2)

tx̂  are the LKEs (11) based on the 

individual sensors (1)
ty  and (2)

ty , respectively.  

 To study the behavior of the KF and TSSF error 

covariances, let ,1q,16.0,64.02
n === αω  

02.0r1 = , 01.0r2 = , and [ ]12diagP0 = . The 
point of interest is the mean square errors (MSE) in the 
estimate of state components, 
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where [ ]TKF
t2,

KF
t1,

KF
t eee =  is the estimation error of the 

state components under consideration at time t with optimal 
KF, and similarly for TSSF (26).  These are the quantities 
shown in Fig.1.  Fig.1 shows the comparison of MSEs (27) 
for KF and TSSF. 
 

 
Fig. 1 MSE analysis of KF and TSSF for position and velocity 

 

As it is seen from Fig.1, the differences between KF
tii,P  and   

sub
tii,P  are negligible, especially for steady-state regime. This 

means that for our example the application of TSSF can 
produce good results in real-time processing requirements. 
MSEs can be further minimized by increasing the number of 
sensors 2N > . 
 
4.2. Joint Detection and Estimation  

 In this case the observation equation is written as 

 
[ ] tttt1,t wx0wxy +=+= θθ .            (28) 

 

and, ( )r,0~w t  is white noise. where the unknown 

parameter θ  takes only two values, i.e., 
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This represents the observation model which takes two sensor 
modes with 11 =θ (signal-present) and 

02 =θ (signal-absent). We describe here the results of 
simulations of two filters: the optimal LKF (7), (8) and TSSF 

(26), in which (1)
tx̂  and (2)

tx̂  are the LKEs matched to the 

linear system (24), (28) at 11 =θ  and 02 =θ , 

respectively. Note that the TSSF’s weights (i)
tc  in (26) 

represent function on time as distinct from the LKF’s weights 
(i)
tc~  in (8), which depend on present observations ty .  

The values of parameters are 64.02
n =ω , 16.0=α , 

1q = , 01.0r = and [ ]12diagP0 = . 

 Two cases were considered: in the first case, 11 =θ  is 

the true parameter value; for the second case, 02 =θ  is the 
true parameter value. The Fig.2 and 3 present the mean square 
errors (MSE) of position t1,x and velocity t2,x  for the first 

case, respectively. Such time histories are perfect analogy to 
the second case. The analysis of the results shows that the 
TSSF yields good accuracy. It also provides the best balance 
between computational efficiency and desired estimation 
accuracy. 
 

 
Fig. 2 Illustration of the optimal and suboptimal MSE in 
position: MSE of optimal LKF (solid line), TSSF of MSE  
(dotted line). 
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Fig. 3 Illustration of the optimal and suboptimal MSE in 
velocity: MSE of optimal LKF (solid line), TSSF of MSE  
(dotted line). 
 

5. CONCLUSION 
 
 In this paper, we have designed the new two-step 
suboptimal filters for linear dynamic systems with 
multi-sensor environment and observation uncertainties. The 
filters represent linear combination of local Kalman filters. 
Each local filter is fused by the minimum mean square 
criterion. The new filters have parallel structure and are very 
suitable for parallel processing. Simulation results 
demonstrated the high accuracy of the design filters. 
 The proposed filter can be used in the various areas: 
industrial, military, space, communication, target tracking, 
inertial navigation and others [6], [7], [8]. 
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