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Abstract: This paper considers the problem of state estimation in linear continuous-time systems with multi-sensor environment
and observation uncertainties. We propose two suboptimal filtering algorithms for these types of systems. The filtering algorithms
consist of two steps: The local optimal Kalman estimates are computed at the first step. And, these local estimates are lineally
fused at the second step. The implementation of the two-step filtering algorithms needs a lower memory demand than the optimal
Kalman and adaptive Lainiotis-Kalman filters. In consequence of parallel structure of the proposed filters, the parallel computers
can be used for their design. The examples exhibit the effect of common noise on the performance of fusion of the local Kalman
estimates based on observations from different sensors and in the presence of uncertainties.
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1. INTRODUCTION

The problem of the system state estimation in linear
dynamic systems with uncertain observations is considered.
Many techniques are available for the adaptation of systems.
Most identification approaches can probably be applied to
construct an adaptive mechanism. Among existing methods,
we are particularly interested in the partitioned adaptive
technique that is mathematically based on Bayesian estimation
theory [1], [2].

It is known that the linear filtering problem with
unknown parameters, i.e. the adaptive filtering problem,
reduces to a nonlinear filtering problem, which has major
difficulties in its realization [3]. In particular, it is extremely
difficult to assess the effect of approximations made in the
suboptimal realization of nonlinear filters. However,
partitioned adaptive Lainiotis-Kalman filtering constitutes a
partitioning of the original nonlinear filter into a bank or set of
much simpler linear Kalman filters. In other words, the
optimal mean square estimate of state is given by a weighted
sum of the model- or parameter-conditional estimates with
weights representing a posteriori probabilities of unknown
parameter [1], [4], [5]. However the Lainiotis-Kalman filter
yields an effective estimation algorithm only for low
dimension of the parameter vector, since it requires an
evaluation of a posteriori probabilities at each time instance.

Here we also consider the estimation problem for
dynamic systems with multi-sensory data. In recent years,
there has been growing interest to fuse multi-sensory data to
increase the accuracy of estimation parameters and system
states. This interest is motivated by the availability of different
types of sensor which uses various characteristics of the
optical, infrared, and electromagnetic spectrums. In many
situations, system states or targets are observed by
multi-sensors [6], [7], [8]. The overall observations in the
estimation process are assigned to a common target as a result
of the association process. At that time, we need to know how
to combine the local estimates obtained from different types of
sensors. The well-known Millman and Bar-Shalom-Campo
formulas for fusion of two local estimates are used in the
estimation problems [9], [10]. In [11], we have extended these
formulas on an arbitrary number of local estimates.

In this paper, we consider two types of dynamic systems.
The first is the systems with multi-sensor environment. And,
the second is one with observation uncertainties. For these
systems, we propose two-step suboptimal filters based on the
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fusion formula [11], which is applied to fusion of local
Kalman filters. The obtained filtering algorithms reduce the
computational burden and on-line computational requirements.
This has been achieved via the use of a decomposition of the
observation vector into a set of subvectors of low dimension.
The example demonstrates the efficiency and high-accuracy of
the proposed algorithms.

This paper is organized as follows. In Section 2, we
consider continuous-time dynamic systems with multi-sensor
environment and observation uncertainties. In Section 3, the
new suboptimal filters are derived by using the fusion formula.
In Section 4, the proposed filters are numerically tested.
Finally, Section 5 is the conclusion.

2. LINEAR DUNAMIC SUSTEMS WITL
MULTI-SENSOR ENVIRONMENT AND
UNCERTAINTIES

Consider a continuous-time linear dynamic system

x, =Fx, +Gv,, t=0. (1

where X, € R" is the state vector, R" is an

n-dimensional Euclidean space, V, ~ (O,Qt) is Gaussian
white noise with zero mean and intensity Qt . Suppose that

the observation system involves N sensors with uncertainties,
ie.,

1 1 1 1 m
N N N N m

where W ?) ~ (0, R?) (9 )) We assume that the initial state

X NN(XO,PO), the system noise V. ,and the

t

observation noises Wil), 1=1,...,N are mutually

uncorrelated. The system matrixes Ft’Gt’ and Qt are
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completely known, and the observation matrices HEi) (9)

and R?) (9) include an unknown parameter vector

0ecRP.

2.1. Optimal Kalman Filter
Let assume that the parameter O is completely known,

*
ie, @ =6, then the Kalman filter (KF) gives optimal
. KF
mean square estimate X, of state X, based on the overall

observations L], ,

(O] () O
Y H, W,
o= o = s X+ | 3)
™) ™) ™)
Y. Ht Wi
where
HO =HO(0). w?~(0R). RO=RO(E). @
However in the cases of limited computing and

communication resources, and large number of sensors, the
KF can not produce well-timed results as it simultaneously

processes the overall measurements Dt at each time instant

. KF .
t to calculate the current estimate X, . Therefore, if

dimension

dim([],)=m, +---+m. (3)

of the overall observation vector is large, then the KF is
unpractical.

2.2. Optimal Adaptive Lainiotis-Kalman Filter

In structure adaptation, two filters are primarily used for
the system (1), (2). Both of these filters are based on the

O is

assumed to be random with a prior known probability p(@) .

Bayesian approach in which the unknown parameter

In the first filter, O is treated as a random constant vector
such as Zt =0, Z, = 6. And the system (1) together

with the assumption can be reformulated as the nonlinear

. T
model for the composite state vector [Xt Zt] , and the

suboptimal nonlinear filtering procedures can be applied to

. . T . .
estimate the composite state [Xt Zt] ,which contains

z, =0 as its component. However, it is difficult to

t
estimate the effect of approximations made in the suboptimal
realization of nonlinear filters. The second filter represents the
adaptive Lainiotis-Kalman filter (LKF), which separates the

filtering process X, from the identification of the unknown
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parameter o [1], [4], [5]. If it takes only a finite set of
values

96{(91,...,9N}. (6)

then the optimal state estimate XlLKF

represents weighting
KF .
sum of local Kalman filters X, (01 )matched to the linear

system (1), (2) at fixed 0= t9i ,1.e.,

N
x =3 T% (0,) (7
i=1
where the weights
Et“):p(ei\mg), i=1,...,N. ®)
represent a  posteriori  probabilities  of Hi given

Dot = {DS :0<s< t}. As was already said in the
introduction, the LKF is effective only for low dimension of

parameter 0 eRP , since it requires calculations of a

posteriori probabilities p(&’- uol) at each time instance

1
t>0.

In this paper we develop alternative two-stage suboptimal
filters (TSSF) for the system (1) with multi-sensor
environment (2), when parameter @ is known and
unknown. These filters do not require calculations of «

posteriori probabilities Ek(i) zp(ei‘yk) at each time

instance. The obtained filtering algorithms reduce the
computational burden and on-line computational requirements.
It is achieved via a decomposition of the overall observation
vector (3) into a set of subvectors of low dimension.

3. TWO-STEP SULJOPTIMAL FILTERS

The new filtering algorithms consist of two steps. On the
step we determine local Kalman estimates

(ﬁlters)X?),i =1,...,N. And on the second step, these

first

estimates are fused into overall suboptimal state estimate.

3.1. Local Kalman Filters for Dynamic Systems with
Multi-Sensors Environment

Consider dynamic system (1), (3) including N sensors
with known parameter 0=0 ' . According to (1) and (3), we
have N dynamic subsystems (i =1,...,N) with state

vector X, € R" and observation subvector y?) e R™:

X, =Fx,+G,v,, y"=H"x +w?. (9
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where the number of subsystem 1 is fixed.

Next, let us denote the estimate of the state X based on

@
t

apply the optimal KF to the subsystem (13) [1], [3].

). To find X?) we can
We have

the individual sensor y?) by X

K =+ POHRY [y 10X

Pt(ii) _ FtPt(ii) n Pt(ii)FtT _ Pt(ii)HEi)"'REi)"Hii)P'fii) (10)
+ G.Q,G;.

Thus we have N local Kalman estimates (LKEs)

x x™ (11)

based on the individual sensors yﬁl) . yEN) , respectively,

and corresponding local error covariances (LECs)

11 NN
T A (12)

3.2. Local Kalman Filters for Dynamic Systems with
Observation Uncertainties

Consider dynamic system (1), (2) with one sensor
(N =1) containing unknown parameter 6 . We have

X, =Fx, +Gv,, [, =H, (0, +w,.

. (13)
where X, € R", U, = yil) IS le,Ht(ﬁ)Z Hil)(e),
6elo,....0,}.

Using the Kalman filter for the system model (13) at the fixed

0= 91 , we have N local Kalman estimates

x"=x(6), i=1,...,N (14)
and associated local error covariances
P"=pP(8), i=1,...,N. (15)

3.3. Fusion of Local Kalman Estimates
Suppose we have N LKEs (11) or (14) with the

corresponding LECs (12) or (15). Then the overall

suboptimal linear estimate of state is given by

Xsub :ZC?)X?)’ ZC?) :In‘ (16)
i=l i=1

18

M ™N)
t

where In is the N XM init matrix, and C, ",...,C are

N XN weight matrices determined from the mean square
criterion

2
2

E“x x| =E

- m“i)n (17)
cI

N
[ON0)
Xy 'th Xy
i=1
sub

The following theorem completely defines the estimate X,

and its error covariance

sub __ sub _ sub sub _ sub
P, —cov(et ,€, ) e, =X,—X, . (9

1) XEN)

Theorem[1]. Let X", ..., be the local Kalman

estimates of an unknown state X, . Then the weight matrices
N)
t

CEI),...,C are given by

N N
>l M=o, el =1,
i=1 i=1
N

j=1L..,N-1, >l =1, (19)
i=l

Corollary 1. If Xil),. ..,XEN) are unbiased estimates then

. . b . . .
the suboptimal estimate Xiu in [16) is unbiased.

Corollary 2. The error covariance PtSUb is given by

N
b _ Op @) (0 \F
P, = th P, (ct ) .

i,j=1

(20)

In the particular case at N =2, the formulas (16), (19)
are reduced to the Bar-Shalom-Campo formulas [10]:

sub (

— ~D M @+ @
X, =C Xy +Ct Xi s

—1
¢ = [P‘<22> _pey Ipt(n) L P _pOd Pf“] Qe
-1
c® = [Pt(“) _p ][Pf“) +P® _pd _ Pt<21>] ‘

If these two estimates are uncorrelated, i.e., p? = 0, then
the formulas (11) give the Millman formulas [4]:

I _ p@2)pah @) !
Ci _Pt [Pt +Pt ] ?

-1
CEZ) _ Pl(ll) [Pt(ll) n Pl(zz)] .

@
t
algebraic equations (19) with coefficients depending on the

As we see the unknown weights C.~ are satisfied to the linear

LECs Pt(ij) , i,j =1,...,N. Usually in various estimation
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problems the LECs Pt(ii),i=1,...,N are known. For
instance, in linear filtering problems 3.1 and 3.2 the LECs

Pt(ii) are described by the Kalman filter equations [see (12)

or (15)]. However the cross-covariances Pt@ , 1# j, are

usually unknown and it should be determined in each
specific filtering problem.

3.4. Elunation for Cross-Covariance in Filtering Problem
with Multi-Sensors Environment

In the filtering problem (1), (3), (4) the cross-covariance
Pt(u), where 1# j, satisfies to the following differential

equation:
Pt(ij) — (Ft _ Pt(ii)HiDTREi)" H?) )Pt(ij)
+ po (Ft _pOHO RO YO )T 22)
+ GQ,G/, P =P; i=]
where Pl(ii) ,i=1,...,N represent the LECs (12).
Thus the LKEs (11), LECs (12), and equations (16), (19),

(22) completely define the twolsteps suboptimal filter [TSST]
for dynamic system with multi-sensors environment (1), (3),

(4).

3.5. E[uation for Cross-Covariance in Adaptive Filtering
Problem
In the the

adaptive filtering problem (1),(2),(6)

cross-covariance Pt(lj) , 1# _] also satisfies to the equation
(22) with matrices

HO=HO(8), RO =RO(0) @

and LECs P® (15).

Thus the LKEs (14), LECs (15), and equations (16), (19), (22)
completely define TSSF for dynamic system with observation
uncertainties (1), (2), (6).

Remark 1. The LKEs are separated, i.e., each local estimate
x®
LKESs can be calculated in parallel. The proposed TSSF is also
robust, since it can be corrected even if one of the parallel

is found independently of other estimates. Therefore, the

local estimates XS) diverges. In this case, the corresponding
(@

weight matrix C,

in (16) will tend to zero, thereby

indicating that the diverging local estimate X?) will be

discarded in the weighting sum.

Remark 2. We may note, that the all covariances Pt(ij), and

the weights C?) may be pre-computed, since they do not

19

depend on the measurements Dt, but only on the noises

statistics Qt . REI) , and the system matrices Ft , Gt , HEI) ,

which are the part of system and measurement model (1), (2).
Thus, once the measurement schedule has been settled, the
real-time implementation of the TSSF requires only the
computation of the LKEs and the final suboptimal estimate

sub

Xt

Remark T In case of one sensor (N =1) and completely
known parameter 6 = @ ’ , the TSSF coincides with KF.
Remark ] The TSSF can also be used for distributed parallel

data fusion system, provided better communication system
and individual measuring device with processing capabilities.

4. ESTIMATION OF DAMPER [JARMONIC
OSCILLATOR MOTION

In this section, we verify TSSFs for model of the harmonic
oscillator [10]

t>0. (24)

t to
1

T . o
where X, = [Xl’t X2,t] and X, is position, and
Xy is velocity, VvV, ~ (O,q), Xg ~ N(XO,PO )

We consider two observation models:

4.1. Two sensors for measuring a position

In the first observation model position X, is only

measured by two different sensors which are given

M M 2 ()

Y. =X1,[-i-Wt s Yy =X2,l-|-Wt . (25)

where Wil) ~ (0,1‘1) andWEz) ~

white noises.

(0, r, ) are uncorrelated

For this case two filters for the system model (24), (25) are
considered:

A). The KF based on the overall observation model (3),

(1) 1 0 1)
u:yl , H=|: :|, Wt:Wt

t 2) 2)
\B 10 W,
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B). The TSSF based on the Bar-Shalom-Campo formulas (21),

sub __

Wy 4 @0
P=cex V4 ePx . (26)

X t

(O]
t

2

and X/

where X are the LKEs (11) based on the

individual sensors y" and y@, respectively.

To study the behavior of the KF and TSSF error
et @, =064, a=0.16, q=1,
r, =002, r, =0.01, and P, =diag[2 1]. The

point of interest is the mean square errors (MSE) in the
estimate of state components,

covariances,

I)J(F

it =E[(6KF)2J, e =x., —x¥, i=1.2,

it it it it o
(27)
vaub

ii,t

2
=El(e§ub) J, esub =xX. _Xsub

it it it it 2

i=1,2.

KF KF KF|T . L
where €~ = [e1 ¢ €, ] is the estimation error of the

state components under consideration at time t with optimal
KF, and similarly for TSSF (26). These are the quantities
shown in Fig.1. Fig.1 shows the comparison of MSEs (27)

for KF and TSSF.
sub sub
12 Pl It P22,r
......... KF pKF
1 S P11,1 s P22,1 s
_ s
N
= \
0.8} N |
o 5
g \
2 \
06} N 1
3 \
2 N
0.4 Sl Vel cit ,
0.2} 4
- P iti -Cl e F SFF timate

| | 1 TR I I I I
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ime 2

Fig. 1 MSE analysis of KF and TSSF for position and velocity

. . . KF
As it is seen from Fig.1, the differences between Piit and

P sub

¢ are negligible, especially for steady-state regime. This
means that for our example the application of TSSF can
produce good results in real-time processing requirements.
MSEs can be further minimized by increasing the number of
sensors N > 2.

4.2.  Joint Detection and Estimation

In this case the observation equation is written as

20

Y, =Hxl,t +w, = [9 O]xt +w,. (28)

and, W, ~ (O,I‘ ) is white noise. where the unknown

parameter 0 takes only two values, i.e.,

92{‘91:1a pl:Pr(HZHI) (29)

0,=0, p,=Pr(0=06,)

This represents the observation model which takes two sensor
with 6, =1
92 =0 (signal-absent). We describe here the results of
simulations of two filters: the optimal LKF (7), (8) and TSSF
(26), in which x " @

t t

modes (signal-present) and

and X are the LKEs matched to the

linear system (24), (28) at 6, =1 and 6, =0 ,
0)

respectively. Note that the TSSFs weights C;

in (26)
represent function on time as distinct from the LKF s weights

Et(l) in (8), which depend on present observations Y, .

The values of parameters are C()If =0.64,a=0.16,
q=1, r=0.01and P, =diag[2 1].

Two cases were considered: in the first case, 91 =1is
the true parameter value; for the second case, 92 =0 isthe
true parameter value. The Fig.2 and 3 present the mean square
errors (MSE) of position Xy and velocity Xy for the first

case, respectively. Such time histories are perfect analogy to
the second case. The analysis of the results shows that the
TSSF yields good accuracy. It also provides the best balance
between computational efficiency and desired estimation
accuracy.

2 T T T T
L et S SR
= i i v True persmeter
I} J ! ! \Huea1:=1
= i i i i
i i i i i
3 A= el ettt st it
= 1 1 1 1
tn i i i i
s i i i i
o i i i i
o 1 1 1 1
Y] R R (R b ]

N D SO SO SO

1] 10 o 30 40 A0

Time

Fig. 2 Illustration of the optimal and suboptimal MSE in
position: MSE of optimal LKF (solid line), MSE of TSSF
(dotted line).
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L y : y y Filtering and Generalized Millman s Formula, Proc. 6th
; : ; ; IASTED International Conf. on Signal and Image
e — R ] Processing, Honolulu, Hawaii, pp. 369-374, USA, 2004.
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Fig. 3 Illustration of the optimal and suboptimal MSE in

vel

ocity: MSE of optimal LKF (solid line), MSE of TSSF

(dotted line).

5. CONCLUSION

In this paper, we have designed the new two-step

suboptimal filters for linear dynamic systems with
multi-sensor environment and observation uncertainties. The
filters represent linear combination of local Kalman filters.
Each local filter is fused by the minimum mean square
criterion. The new filters have parallel structure and are very
suitable for parallel processing. Simulation results
demonstrated the high accuracy of the design filters.

The proposed filter can be used in the various areas:

industrial, military, space, communication, target tracking,

ine
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