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1. Introduction 
 

In the hard real-time digital instrumentation and control 
(I&C) systems of nuclear power plants, a real-time 
schedulability analysis is required to check if a task can 
completely execute a required mission within its deadline. 
The worst-case execution time (WCET) is one of the 
timing parameters in the schedulability analysis. The 
WCET is defined as the maximal possible execution time 
of a program before using the program in a system. 
Although an exact prediction of WCET is impossible 
because of the non-deterministic characteristic of 
hardware, it must be safe (i.e., no underestimation of the 
execution time) and tight (i.e., as little overestimation as 
possible). Underestimation of the execution time causes a 
fatal error of a system. The WCET estimation should be 
applied to only one task and assume that preemption or 
interrupt does not occur during its execution. 

This paper presents the safe and tight WCET 
estimation method applied to the schedulability analysis 
for SMART-P MMIS. 

 
2. Methods and Results 

 
The WCET estimation method consists of a high-level 

analysis, low-level analysis, and a path search. This 
method is procedurally performed to calculate a WCET. 

  
2.1 High-level analysis 

 
The high-level analysis is to draw a control flow graph 

(CFG) of a program and decompose a program with a 
consideration of an infeasible path, loop bound, and a 
function call. Analyzed information for the structure of a 
program is described with a specification language which 
consists of three parts such as the name of the scope 
where the fact is defined, context specifier, and the 
constraint expression [1] as shown in Figure 1. Each node 
of the CFG is a sequence of statements without a jump 
statement. Figure 2 shows that the program in Figure 2(a) 
is divided into the nodes of a CFG in Figure 2(b). The 
CFG can be attached with a flow fact as shown in Figure 
2(b). The flow fact for the program will impact on the 
search for the longest execution path in the program. 

  
2.2 Low-level analysis 

 

 
Figure 1. Flow Facts Specification 

 

 
Figure 2. CFG with attached Flow Facts 

 
To execute a low-level analysis, it is assumed that a 

processor is manufactured with a reduced instruction set 
computer (RISC) architecture that executes one 
instruction per clock cycle. The low-level analysis is to 
analyze the timing behavior of a target processor like 
cache and pipeline. Cache analysis is to predict the cache 
hit or cache miss during a run-time. Pipeline analysis is to 
analyze how many cycles are needed by each pipeline 
stage for instruction execution using the cache analysis 
results [2, 4].  

The low-level analysis is performed using a simulator 
provided by a chip manufacturer. The simulator must 
have a cycle-accurate model of the CPU [3]. If we 
assumed to compute the execution cycle of each node (C 
and D) and two successive nodes in a CFG using the 
simulator as shown in Figure 3(a), the timing effect for 
the pipeline overlap between the two successive nodes 
can be calculated as shown in Figure 3(b): 
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2.3 Path Search 
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Figure 3. Timing Effects using a Simulator 
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Figure 4. Longest Path Search 

 
When we have assumed the cycle time of all the nodes 

and the timing effect between successive nodes as shown 
in Figure 4(a), the longest path in a loop can be searched 
by computing the time sum and the predecessor for each 
node of the CFG. The longest path of a loop statement is 
A-C-D-F-G as shown in Figure 4(b). When we have 
assumed a loop bound, the WCET of the loop statements 
becomes:  
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If a path has a flow fact and/or a long timing effect, the 

path search should accommodate them [4, 5]. When we 
consider the flow fact of Figure 2(b) into Figure 4(b), the 
path should be divided into two virtual scopes as shown 
in Figures 5(a) and 5(b). In Figure 5(b), the original 
longest path with an infeasible path is removed and the 
new longest path (A-C-D-E-G’) is searched by adding 
new nodes and edges. When we have assumed a long 
timing effect across the successive nodes (C-D-F) as 
shown in Figure 6(a), the new longest path is searched by 
adding the time of the timing effect to the last edge in the 
sequence as shown in Figure 6(b). By a summation of 
5(b) and 6(b), the WCET for the loop-statement is (4 * 
58) + 59 + (5 * 63) = 606 cycles. 

 
3. Conclusion 

 
The WCET estimation method for a program with a 

high-level and low-level analysis and a path search is 
presented in this paper. We assumed a RISC processor 
and that the chip’s timing behavior is provided by the 
chip-maker. 
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Figure 5. Longest Path Search by Fact 
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Figure 6. Longest Path Search by long timing effect 

 
The WCET estimate will provide the most important 

timing parameter for the real-time schedulability analysis. 
For a future work, we plan to build a pipeline model for a 
specific processor and research the timing parameters like 
a blocking and interference for the real-time 
schedulability analysis. 
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