
A WCET Estimation Method for a Real-time Schedulability Analysis

Jaehong Park, a Yongsuk Suh, a Insoo Koo,a Sehyung Jung,b

a Div. of I&C and HFE, KAERI, 150 Dukjin-dong, Yuseong-gu, Daejon, Korea, 305-353, middle75@kaeri.re.kr
b Control Tech. Research Inst., SEC Ltd.,974-1 Goyeon-ri Woongchon-myon, Ulju-gun, Ulsan, Korea, 689-871

1. Introduction

In the hard real-time digital instrumentation and control
(I&C) systems of nuclear power plants, a real-time
schedulability analysis is required to check if a task can
completely execute a required mission within its deadline.
The worst-case execution time (WCET) is one of the
timing parameters in the schedulability analysis. The
WCET is defined as the maximal possible execution time
of a program before using the program in a system.
Although an exact prediction of WCET is impossible
because of the non-deterministic characteristic of
hardware, it must be safe (i.e., no underestimation of the
execution time) and tight (i.e., as little overestimation as
possible). Underestimation of the execution time causes a
fatal error of a system. The WCET estimation should be
applied to only one task and assume that preemption or
interrupt does not occur during its execution.

This paper presents the safe and tight WCET
estimation method applied to the schedulability analysis
for SMART-P MMIS.

2. Methods and Results

The WCET estimation method consists of a high-level

analysis, low-level analysis, and a path search. This
method is procedurally performed to calculate a WCET.

2.1 High-level analysis

The high-level analysis is to draw a control flow graph

(CFG) of a program and decompose a program with a
consideration of an infeasible path, loop bound, and a
function call. Analyzed information for the structure of a
program is described with a specification language which
consists of three parts such as the name of the scope
where the fact is defined, context specifier, and the
constraint expression [1] as shown in Figure 1. Each node
of the CFG is a sequence of statements without a jump
statement. Figure 2 shows that the program in Figure 2(a)
is divided into the nodes of a CFG in Figure 2(b). The
CFG can be attached with a flow fact as shown in Figure
2(b). The flow fact for the program will impact on the
search for the longest execution path in the program.

2.2 Low-level analysis

Figure 1. Flow Facts Specification

Figure 2. CFG with attached Flow Facts

To execute a low-level analysis, it is assumed that a

processor is manufactured with a reduced instruction set
computer (RISC) architecture that executes one
instruction per clock cycle. The low-level analysis is to
analyze the timing behavior of a target processor like
cache and pipeline. Cache analysis is to predict the cache
hit or cache miss during a run-time. Pipeline analysis is to
analyze how many cycles are needed by each pipeline
stage for instruction execution using the cache analysis
results [2, 4].

The low-level analysis is performed using a simulator
provided by a chip manufacturer. The simulator must
have a cycle-accurate model of the CPU [3]. If we
assumed to compute the execution cycle of each node (C
and D) and two successive nodes in a CFG using the
simulator as shown in Figure 3(a), the timing effect for
the pipeline overlap between the two successive nodes
can be calculated as shown in Figure 3(b):

151721 −=−−=−−= DCCDCD TTTδ

2.3 Path Search

1−=CDδ

Figure 3. Timing Effects using a Simulator

1−=DEδ

3−=BDδ 1−=CDδ

3−=DFδ

2−=ABδ

3−=EGδ

C⊥

X⊥

1−=δ
2−=δ

2−=ACδ

1−=FGδ

C⊥ X⊥

C⊥

X⊥

Figure 4. Longest Path Search

When we have assumed the cycle time of all the nodes

and the timing effect between successive nodes as shown
in Figure 4(a), the longest path in a loop can be searched
by computing the time sum and the predecessor for each
node of the CFG. The longest path of a loop statement is
A-C-D-F-G as shown in Figure 4(b). When we have
assumed a loop bound, the WCET of the loop statements
becomes:

).(_)1(*)(_ XC sumtimeloopboundsumtime ⊥+−⊥
If a path has a flow fact and/or a long timing effect, the

path search should accommodate them [4, 5]. When we
consider the flow fact of Figure 2(b) into Figure 4(b), the
path should be divided into two virtual scopes as shown
in Figures 5(a) and 5(b). In Figure 5(b), the original
longest path with an infeasible path is removed and the
new longest path (A-C-D-E-G’) is searched by adding
new nodes and edges. When we have assumed a long
timing effect across the successive nodes (C-D-F) as
shown in Figure 6(a), the new longest path is searched by
adding the time of the timing effect to the last edge in the
sequence as shown in Figure 6(b). By a summation of
5(b) and 6(b), the WCET for the loop-statement is (4 *
58) + 59 + (5 * 63) = 606 cycles.

3. Conclusion

The WCET estimation method for a program with a

high-level and low-level analysis and a path search is
presented in this paper. We assumed a RISC processor
and that the chip’s timing behavior is provided by the
chip-maker.

C⊥

X⊥

C⊥

Figure 5. Longest Path Search by Fact

C⊥

1=+= DFCDFDF δδδ

C⊥

4+=CDFδ

Figure 6. Longest Path Search by long timing effect

The WCET estimate will provide the most important

timing parameter for the real-time schedulability analysis.
For a future work, we plan to build a pipeline model for a
specific processor and research the timing parameters like
a blocking and interference for the real-time
schedulability analysis.

REFERENCES

[1] Jakob Engblom, et al., “Modeling Complex Flows for
Worst-Case Execution Time Analysis”, 21th IEEE Real-Time
Systems Symposium (RTSS’00), November 2000.
[2] C. Healy, et al., “Bounding pipeline and instruction cache
performance”, IEEE Transactions on Computers, 48(1), January
1999.
[3] J. Engblom and A. Ermedahl, “Pipeline timing analysis
using a trace-driven simulator”, 6th International Conference on
Real-Time Computing Systems and Applications (RTCSA),
IEEE Computer Society Press, December 1999.
[4] F. Stappert and P. Altenbernd, “Complete worst-case
execution time analysis of straight-line hard real-time programs”,
Technical Report 27-97, C-LAB, Paderborn, 1997.
[5] Friedhelm Stappert, et al., “Efficient Longest Executable
Path Search for Programs with Complex Flows and Pipeline
Effects”, 4th International Workshop on Compiler and
Architecture Support for Embedded Systems (CASES 2001),
ACM Press, November 2001.

	분과별 논제 및 발표자

