
SMART-P MMIS Software Development by Considering the Software License for Nuclear
Power Plants and the Development Cost

Yong Suk Suh,a Jae Hong Park,a Heui Youn Park,a Ki Sung Son,b Ki Hyun Lee,b Hyeon Soo Kim c

a Div. of I&C and HFE, KAERI, 150 Dukjin-dong, Yuseong-gu, Daejon, Korea, 305-353, yssuh@kaeri.re.kr
b Control Tech. Research Inst., SEC Ltd.,974-1 Goyeon-ri Woongchon-myon, Ulju-gun, Ulsan, Korea, 689-871

c Dept. of Computer Science and Eng., Chungnam Nat’l Univ., 220 Gung-dong, Yuseong-gu, Daejon, Korea, 305-764

1. Introduction

The acceptance criteria of software for safety system
functions in NPPs (Nuclear Power Plants) are as follows:
1) acceptable plans should be prepared to control the
software development activities, 2) the plans should be
followed in an acceptable software life cycle, and 3) the
process should produce acceptable design outputs [1].
The KINS (Korea Institute of Nuclear Safety)
recommended that the software life cycle should be
established based on the IEEE Std 1074 with a
supplementary requirement of a software safety analysis.
The KINS emphasized that the software should be
developed to show its high qualities [1]. This paper
identifies the major requirements to achieve the software
license from the KINS and presents the major facts
reflected in the SMART-P (System-integrated Modular
Advanced ReacTor-Pilot) MMIS (Man-Machine Interface
Systems) which is being developed by KAERI and
targeted to start operation in 2010. This paper also
addresses major concerns on the development of a safety
critical software and the facts reflected in the SMART-P
MMIS.

2. Major Facts in the Software Development

After reviewing the software development
requirements [1], this paper categorizes them as follows:
1) software classification, 2) software development life
cycle, 3) software quality assurance, 4) software
configuration management, 5) software hazard analysis,
6) software verification and validation, and 7) use of a
pre-developed software. The KINS recommended that the
IEEE standard should be referenced to perform the
software development activities.

2.1 Software Classification

There are three grades of software classification in the
SMART-P MMIS: a safety-critical (SC) software, safety-
related (SR), and a non-safety (NS) software. The
classification is assigned to each system in the SMART-P
MMIS based on its criticality as shown in Table 1.

2.2 Software Development Life Cycle (SDLC)

The SDLC is comprised of eight phases: an initiation,
plan, requirement, design, implementation, integration
and validation, installation, and an operation and

maintenance [2]. The SDLC is sequentially performed in
accordance with the waterfall model. The SDLC complies
with the IEEE Std 1074 as shown in [2].

2.3 Software Quality Assurance

The software quality assurance plan and procedure
complying with the criteria in KEPIC QAP-1 and QAP-
2.7 and IEEE Std 730 are performed throughout the
SDLC. Software development organization consists of a
project management team, quality assurance team,
development team, verification and validation team,
configuration management team, and a safety analysis
team. The responsibility of each team is clearly defined in
its planning documents. Since a document-based software
development principle is adopted, all of the software
activities are recorded, reviewed, approved, documented,
and maintained throughout the SDLC. Proper guides are
made to keep a consistency among the software products.
The guides refer to the IEEE software standards. The
IEEE software standards referenced in the SMART-P
MMIS software development are presented in [3]. The
software abnormalities are controlled by the quality
assurance team until they are fixed.

2.4 Software Configuration Management (SCM)

All the baselined software products are maintained and
changed by the configuration control procedure
throughout the SDLC. They are all identified with a
unique name and revision number. The configuration
control board analyzes an impact of the software change
and makes a decision on the performance of the change.

2.5 Software Hazard Analysis (SHA)

The SHA identifies abnormal conditions and events
(i.e., hazard) caused by a software throughout the SDLC.
The SHA consists of the preliminary hazard analysis,
fault tree analysis, and the failure modes and effects
analysis. The SHA is performed from the viewpoints of a
human error, development process error, and a product
error.

2.6 Software Verification and Validation (SV&V)

The evidence of the SV&V activities is an important
factor to achieve the software license from the KINS. The
software faults should be found through the SV&V. The

SV&V is manually performed throughout the SDLC. The
V&V activities comprise the software analysis, software
review, and the software test. For the software analysis,
the traceability analysis, interface, data flow, control flow,
and the timing analysis are manually performed. The
requirement traceability matrix is maintained throughout
the SDLC. For the software review, the management
review, technical review, walkthrough, and inspection are
performed with a team-based review. For the software
test, the software unit test, module integration test, system
test, and the MMIS integration test are sequentially
performed. All the software tests are procedurally
performed: a plan phase, analysis, design, execution,
evaluation, and a summary report phase.

2.7 Use of Pre-developed Software (PDS)

The PDS includes a commercial off-the-shelf software,
proprietary software, and a previously developed software.
The PDS is used after evaluating and assessing that the
PDS can perform its required functions.

3. Major Concerns for the Safety-critical Software
Development

This paper addresses the major concerns of the KINS
for the safety-critical software development as follows: 1)
the use of a formal method, 2) software reliability testing,
and 3) the software diversity. The formal method such as
the use of a mathematical representation or logical proof
technique is not adopted due to the following reasons: too
many constraints and assumptions are required, it is
difficult to understand if a complicated mathematical
notation is used, and it will take a long period for the
specification [4]. It is not a cost-benefit method. Instead,
the technique of a structured analysis and structured
design is adopted and conducted using a computer-aided
software engineering tool for the analysis of the software
requirements and the construction of software architecture.

No software reliability testing is performed because it

is not a cost-benefit method. If the loop body has 5 paths
and the loop executes 20 times in a module, 520 different
paths exist. It may not be realistic to test all the paths.
Software failures that are not the consequence of
hardware failures are caused by design errors and,
therefore, do not follow the random failure behavior used
for the hardware reliability [5]. No software diversity
technique such as a N-version programming in a system
is used. There have been no reports that the technique
remarkably increased the software reliability. For the
consideration of adopting several different organizations
for developing the same software requirement, it will cost
much more when compare to the achievements of the
software reliability. It is not a cost-benefit method.

4. Conclusion
The software development methodology in this paper

was submitted to the KINS which reviews it in terms of
safety and will approve its usage for the SMART-P by
early 2005. Currently, the SMART-P MMIS is being
developed in the “SMART MMIS Joint Research and
Development Center” established by KAERI and SEC in
2004. It is true that the method for the software quality
metrics and measurement was not shown in this paper.
This will be studied further.

REFERENCES
[1] KINS/RR-106, “Development of Safety Requirements and
Guides for Digital-Based I&C Systems Important to Safety in
Nuclear Power Plants”, KINS, Korea, March 2002.
[2] Yong Suk Suh, et al., “A Development of SDLC for MMIS
of SMART Research Reactor”, Proceedings of the Korean
Nuclear Fall Meeting, KNS, Korea, October 2004.
[3] Yong Suk Suh, et al., “Software Development Adhering to
Software Standards for MMIS of SMART Research Reactor”,
Proceedings of 2004 KEPIC-Week, KEA, Korea, August 2004.
[4] KAERI/CM-103/94, “A Study on the Software Development
Methodology of a Highly Reliable Software”, KAERI/KAIST,
Korea, 1994.
[5] RG-1.152, “Criteria for Digital Computers in Safety Systems
of Nuclear Power Plants”, rev 1, U.S. NRC, U.S.A., January
1996.

Software classification Safety-critical (SC) Safety-related (SR) Non-safety (NS)
Criticality If this software is performed

incorrectly, inadvertently, or out
of sequence, SMART-P could
be in a hazard state.

This software should have
a proper quality to support
the SC software.

This software should have a proper
quality enough to operate for the
non-safety functions in nuclear
power plants.

Quality assurance (QA)
criteria

KEPIC QAP-1 and QAP-2 Corresponding to KEPIC
QAP-1 and QAP-2.7

Complying with industrial standards

Common cause failure (CCF)
analysis requirement

Yes No No

Independent V&V (IV&V)
requirement

Yes No No

Electrical classification 1E Non-1E Non-1E
Systems in the SMART-P
MMIS

PPS, SCOPS, Safety control
system, Safety instrumentation,
PAM (category A) indication,
Safety local controller

DPS, AIS, CFMS, Large
display panel (fixed part),
Non-safety neutron
instrumentation

IPS, NIMS, Large display panel
(variable part), Non-safety
instrumentation, Non-safety control
system, Non-safety local controller

Table 1 Software Classification of the SMART-P MMIS

	분과별 논제 및 발표자

