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1. Introduction 
 

A model for embedding reinforcements in concrete 
elements for analysis of reinforced concrete (RC) 
structures is presented. This procedure alleviates the 
laborious task of generation the input data for the 
embedded bar elements in three dimensional (3D) finite 
element (FE) analysis of reinforced concrete structures 
such as containment buildings of nuclear power plants, 
particularly when modifications to the concrete element 
mesh are made, or reinforcement arrangement is changed.  

The formulations of embedded element are explained 
and implemented in NUCAS codes [1]. A numerical 
example is used to verify the validity of the model. 

 
2. Formulations of the embedded element 

 
In 3D nonlinear FE analysis of RC structures, three 

methods available for the simulation of reinforcement are 
smeared, discrete and embedded method. The smeared 
and discrete formulations are dependent on the concrete 
element mesh. In 3D applications, this can lead to 
prohibitive computational costs due to the use of many 
unnecessarily small elements or inaccuracies caused by 
elements with undesirable aspect ratios. To remedy these 
problems, embedded formulation is preferable. 
 
2.1 Linear embedded element 

 
It is important to find the intersection point of 

reinforcement segment with boundaries of concrete 
elements. There are two methodologies to fine the 
intersection point such as linear and curved embedded 
approaches. In this study, linear embedded method is 
adapted. 

To determine the intersection points of 1 2P P  with face 
of concrete solid elements in Figure 1, the equation of 
line 1 2P P  is written in a parametric form as following [2], 
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where S is the ratio between the length of 1 2P P and the 

length of a1P P  in Figure 1.  
The equation of a typical face of the element may by 

written as 0a ⋅ =0P P R  where 0P is a corner node, aP is a 
generic point on the surface and R is a unit normal vector 
to this face. Therefore, the procedure will be exact for 8-
node linear solid isoparametric elements while 
introducing some approximation for higher-order 
elements with curved surfaces. The coordinates of the 
intersection point  aP  is determined from (1), with S 
determined as 
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Figure 1. Configures of linear embedded element 

 
2.2 Inverse mapping 
 
The inverse mapping procedure, which is a 3D 

extension of the method proposed by Elwi and Hrudey[3], 
is used to find intersection point. A point such as P1 is 
contained in a given concrete element if its coordinates, 
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In the isoparametric formulation the global coordinates 

(x,y,z) of a generic point within a solid element are 
expressed as 
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where a

ix is vectors of element nodal coordinates and aN  
represents the displacement-shape functions at node a. It 
follows that 
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where [ ]J  is the Jacobian matrix. 

From the equation (2), the coordinates ( )
11 2 3, , pξ ξ ξ  

are the roots of the following set of equations: 
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A Nweton-Raphson iterative procedure has been used 

for solution. With an initial estimate of { } { }
1
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the solution after n+1 iterations is determined as 
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The preceding solution method has been found to 

converge rapidly. If the current element does not satisfy 
the equation (3), the procedure is repeated using the nodal 
coordinates of the next coordinates of the next element 
until the element containing 1P  is identified. 

 
3. Numerical example 

 
To verify the linear embedded element implemented in 

NUCAS codes, the nonlinear FE analysis for containment 
wall RC panel subject to biaxial tensile load. Figure 2 
shows an average stress-average strain for reinforcement 
with experimental and analytical results. Before an initial 
crack is occurred, the stiffness of the embedded element 
for concrete is almost closed to experiment result as well 
as FE result using smeared steel layer.   

The first crack of FE analysis occurred at 232MPa in 
hoop direction and at the same time on the overall gauss 
points. From the test, the first crack occurred along the 
right surface above the tendon duct placed line when the 
tensile stress reached 201MPa. The crack stress of the FE 
results is higher than experiment result. Because of not 
including the tendon-duct in the analysis, the stiffness of 
RC element is overestimated as much as the area of the 
tendon-duct. But, overall stress-strain curve for RC panel 
is very similar with experimental data. 
 

 
Figure 2. Average stress-strain curve for steel 

 
4. Conclusion 

 
In this study, a model of embedding reinforcement with 

linear embedded formulations for analysis of RC 
structures is implemented in NUCAS-3D solid element 
codes. To evaluate the developed model, the nonlinear FE 
analysis of containment wall panel subjected to biaxial 
tensile load is employed. From the numerical example, 
the FE analysis results are good agreement with 
experimental data.  
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