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1. Introduction 
 

Type 316LN stainless steel (SS) is widely used as the 
structural material for liquid metal reactor (LMR) 
components [1]. The components may be subjected to a 
non-uniform stress and temperature distribution during a 
high temperature service. These conditions generate 
localized creep damage and propagate the cracks and 
ultimately cause a fracture. A significant portion of the 
components’ life can be spent in crack propagation. Thus, 
it is very important to evaluate the creep crack growth 
rate (CCGR) from a design concern and in predicting the 
residual life of the components [2, 3]. However, so far, 
the design and/or evaluation of the components have been 
mostly conducted by deterministic fracture mechanics. 
This method may bring about overly conservative 
evaluation by applying highly upper limit values in 
material properties. So, using probabilistic fracture 
mechanics, the crack propagation should be evaluated 
probabilistically. 

In this paper, the CCGR data was dealt with from 
probabilistic viewpoints in order to logically evaluate the 
CCGR in type 316LN SS. Using Monte Carlo simulation 
(MCS), a number of random variables were generated, 
and the CCGR lines are predicted probabilistically. For 
application of the MCS, in the case of a standard 
deviation of 1σ for the probability variables, P (B, q), the 
CCGR lines were predicted, and the results were 
discussed. 

 
2. Methods and Results   

 
2.1 Monte Carlo simulation (MCS) method  

 
The MCS is applied to generate the random variables 

(i.e. random numbers) for the B and q coefficients. Box 
and Muller [4] have proposed that random variables (S) 
with standard normal distribution can be represented as,  
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U1 and U2 are standard uniform variables, which have a 
uniform probability density function (PDF) between 0 
and 1.0. Thus, random variables (x) with normal 
distribution N (µ, SD) can be given as [5], 
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For a lognormal random variable x’, the distribution of x 
= log (x’) is normal distribution. Thus, if x is a value 
generated from Eq. (2), 
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Eq. (3) becomes a random number for the lognormal 
distribution with mean µ and standard deviation SD. Eqs. 
(2) and (3) were used to generate the values of the B and 
q, which were shown to be a lognormal distribution.  
 
2.2 Results of the MCS for the B and q  
 

 The general form between the CCGR (da/dt) and the 
C* can be expressed as, qCBdtda ][/ *= . For calculating 
the da/dt, the material constants, D1, m, A, and n were 
used, as given in Table 1.  

 
Table 1 Material properties at 600oC of type 316LN SS 
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Fig. 1 CCGR lines of the  da/dt and C* relationship 
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Fig. 2 Results of the MCS for B distribution 
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Fig. 3 Results of the MCS for q distribution 
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Fig. 4 Comparison of CCGR lines for MCS and PDM 

in 1σ of B and q values 
 

Fig. 1 shows the results of the relationship between the 
da/dt and the C* in the type 316LN SS. To logically 
obtain the CCGR lines, the least square fitting method 
(LSFM), a mean value method (MVM), and a 

probabilistic distribution method (PDM) were applied. 
The MVM line showed a good agreement with the 
experimental data, because the MVM line takes a mean 
value of each B and q of all the CCGR lines. Probability 
distribution was investigated for the B and q coefficients. 
It was investigated as a lognormal distribution. Using the 
results, the MCS was performed using Eqs. (2) and (3).  

Figs. 2 and 3 show the results of the MCS for the B and 
q coefficients. Fig. 4 shows the comparative results of the 
PDM and the MCS in the predicted CCGR lines. In the 
1σ of the B and q values, the PDM line was wider than 
the MCS one. However, the PDM and the MCS do not 
generate a large difference in the CCGR lines. So, the 
both methods can be well used for predicting the creep 
crack growth of type 316LN SS. It is also regarded that 
the MCS were successfully performed without an error. If 
using the MCS, the CCGR lines can be predicted with a 
probabilistic reliability 
  

3. Conclusions 

Both the B and q coefficients followed a lognormal 
distribution, although the B a little scattered in the points 
of the data. Using the MCS, a number of the standard 
uniform variables were generated, and the CCGR lines 
were predicted successfully without an error. In the case 
of the 1σ of the B and q values, The CCGR lines of the 
PDM were more conservative than those of the MCS. 
However, the two approaches did not generate a large 
difference in the CCGR lines. The MCS will be used 
usefully for evaluating the crack growth rate of the type 
316LN SS with a probability.  
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