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1. Introduction 
 

A distinctive feature in a fuel performance code 
relative to others is the consideration of the gas release 
due to fissions during an operation [1]. A lot of models 
have been developed to understand the fission gas release 
where the flux of gas atoms to the grain boundaries is 
described by a diffusion equation with different boundary 
conditions. The solutions of the equation are sought 
analytically as well as numerically [2-4]. Among the 
numerical treatments, the variational principle applied to 
the equation is regarded as a suitable method in the sense 
of its accuracy and efficiency. A finite element method is 
this kind of approach. The accuracy of the FEM depends 
principally on how well the trial functions accurately 
represent the profile of the gas concentration.  

We have tried to increase the accuracy of the 
variational approach not only by introducing the moving 
interface strategy between the two concentric regions for 
the model of the spherical grain, but also by adaptively 
choosing the optimal trial functions. 

 
2. Adaptive variational method 

 
The diffusion equation in spherical coordinates,  
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is solved with the boundary conditions, 0=gc  at grr =  
and 0/ =∂∂ rcg  at 0=r , where gr  is the grain radius, 

gD  the gas atom diffusion coefficient, and β  the rate of 
gas atom generation.  

 
2.1 Investigation of previous works 

 
An attempt to apply the variational principle to the 

problem of the fission gas release was made by Matthews 
and Wood [3]. The spherical grain is divided into two 
concentric regions of almost an equal volume. Three 
nodal points are required; the midpoint radius of region I 
(ρ1 = 0.4), the interface between the regions (ρ2 = 0.8), 
and the midpoint radius of region II (ρ3 = 0.9), where ρ = 
r/rg. The concentrations at these points are represented by 
c1, c2, and c3, respectively. Quadratic functions are 
employed to represent the concentration profile. The two-
zone approximation was reported to be unlikely to give 

satisfactory results at a low release less than 2% [3].  
We have further examined the accuracy of the 

calculation by increasing the number of the concentric 
regions. This was accomplished by using a commercial 
finite element code, ABAQUS. The released fraction at 
the low times seemed to be inaccurately calculated even if 
the number of the finite elements was increased by as 
many as 10. In such a case, the concentration near the 
grain boundary was evaluated to be higher than those at 
the inner points of the grain. In addition, another critical 
problem arose especially in the two-region approximation, 
where the radial coordinate corresponding to the apex of 
the trial function for the outer region, ρ2v is larger than ρ2 
at the early moments.  

 
2.2 Adaptive method for the enhanced accuracy  
 

The exact solution of Eq. (1) is given for a zero initial 
condition and constant gas generation rate in the 
reference [5]. The normalized distribution of the gas 
concentration is nearly flat in most of the grain. It also 
exhibits an abrupt drop near the surface at an early time, 
whose radial coordinate moves inward in proportion to 
the released fraction. The maximal concentration is 
always located at the center of the grain. The distribution 
of the gas concentration is described well by the quadratic 
function later on. Finally those problems mentioned in 2.1 
do not appear in the exact solution. These observations 
mean that the interface of the regions needs to move 
inward, and that the trial functions should guarantee the 
monotonous decrease of the concentration with an 
increasing radial coordinate.  

As for the moving interface, we calculated the locus of 
the radial point as a function of the released fraction 
where the concentration is equal to a constant less than 
unity times its maximum using the exact solution above. 
This locus is ρ2. The application of the same relationship 
is assumed to be applicable to the case of a varying gas 
generation rate. For this purpose, we have prepared the 
quadratic trial functions, C1 and C2 as a function of ρ2 
with ρ1 = 0.4 for the two regions, respectively. ρ3 is the 
mid point of ρ2 and 1. The upper limit of ρ2 is set to be 
0.7. 

Trial functions are modified with the additional criteria; 
0/2 =∂∂ ρC  at 2ρρ =  if ρ2v is larger than ρ2 or if 1c is 

less than 2c . In this case the degree of freedom is reduced 



from three to two. Furthermore 1c is set to be equal to 2c  
for the latter case, thus the degree of freedom is one. The 
trial functions are selected adaptively during the 
calculation according to the previous criteria.  

Several iterations are required to satisfy the 
convergence criteria of the released fraction at every time 
step. 
 

3. Verification of the adaptive method 
 

The present method was compared with the original 
one by Matthews and Wood [3] for the cases of a constant 
and varying gas generation. The reference solutions were 
obtained using the ABAQUS code with 50 elements. We 
have used the diffusion coefficient of the gas atoms in the 
reference [6]. The grain radius is assumed to be 5 µm.  

Fractional gas release was calculated for a series of 
temperature and gas generation conditions. Fig. 1 shows 
an example of the response of the gas released fraction as 
a function of the time. Except for the very low times, the 
present method gave results within a deviation of 0.5 % 
with respect to the reference solution. The two-zone 
method without an adaptivity, however, underestimated 
the released fraction by ~ 3.5%. The released fraction at 
time = 2000 sec was calculated to be 0.0068, 0.0072, and 
0.018 from the ABAQUS, the adaptive two-zone method, 
and  the original two-zone method with a quadrature 
adjustment for  the average gas concentration, 
respectively.    

Fig. 2 shows the calculated fractional gas release as a 
function of the time when the temperature is changed as 
shown. The present method gave a response comparable 
to the reference solution even though it was overestimated 
slightly during a temperature decrease. The original two-
zone method was unsuccessful for the current case. 

 

 
Figure 1. Calculated fractional gas release as a function of time 
at 1200 °C. 

 

 
Figure 2. Calculated fractional gas release as a function of time 
for varying gas generation. 
 

4. Conclusion 
 

An adaptive variational method was developed to solve 
the diffusion equation for a gas release effectively and 
accurately. This approach is more precise than the 
conventional two-zone method by Matthews and Wood, 
especially for a lower gas release. It also provided a 
reasonable means for the condition of a varying gas 
generation. Further studies are needed to optimize the 
present method, and to apply it to the diffusion problems 
with different boundary conditions. 
 

Acknowledgements 
 

The Ministry of Science and Technology (MOST) of 
the Republic of Korea has sponsored this work through 
the Mid− and Long−term nuclear R&D Project. 
 

REFERENCES 
 

[1]  Y.H. Koo, B. H. Lee, D. S. Sohn, Annals of Nuclear Energy, 
26 (1999) 47. 
[2]  A.H. Booth, Report CRDC-721, 1957. 
[3]  J.R. Matthews, M.H. Wood, Nuclear Engineering and 
Design, 56 (1980) 439. 
[4]  K. Lassmann, H. Benk, Journal of Nuclear Materials, 280 
(2000) 127 
[5]  H.S. Carslaw and J.C. Jaeger. Conduction of Heat in Solids, 
Oxford University, London (1959), p243. 
[6]  D.M. Dowling, R.J. White, M.O. Tucker, Journal of 
Nuclear Materials, 110 (1982) 37. 


	분과별 논제 및 발표자

