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1. Introduction 
 

Lots of efforts have been devoted to developing the 
fuel assembly (FA) loading pattern (LP) optimization 
code using various optimization algorithms. Among 
them the simulated annealing (SA) algorithm [1,2] 
appears very promising because of its robustness in the 
optimization calculations [3,4,5].  

However, SA algorithm has a major drawback of 
long computing time because it requires the neutronics 
evaluation of several tens of thousands of the trial LPs 
in the course of the optimization. In order to reduce 
computing time, a simple two-dimensional (2D) 
neutronics evaluation model has been used [3]. 
Unfortunately, however, the final LP obtained from the 
2D SA calculation often turns out to be unsatisfactory 
when it was evaluated by 3D neutronics evaluation 
model. A simple and straightforward way of resolving 
this problem would be to adopt 3D evaluation model 
instead of 2D model during the optimization procedure 
but this would take a long computing time. 

In this paper we propose a screening technique based 
on 2D evaluation model aimed at reducing computing 
time in SA calculation with 3D neutronics evaluation 
model. 

 
2. Methods and Results 

 
2.1 LP optimization by Simulated Annealing 
 
Annealing process is used to obtain the atomic 

arrangement of a metal in its lowest internal energy 
state in material science field. In annealing process, 
metal material is heated up to a very high temperature 
and then it is cooled down very slowly to a very low 
temperature so that the metal material can reach the 
thermal equilibrium state at any given temperature. 
Simulated annealing is based on the analogy of the 

annealing process. For example, the loading pattern and 
the objective function in LP optimization correspond to 
the lattice structure and internal energy, respectively. 
SA algorithm also introduces an artificial temperature 
as an analogy of real temperature. 
SA algorithm starts with a very high temperature and 

then it lowers the temperature very slowly stage by 
stage. At every stage it finds the thermal equilibrium 
state corresponding to the temperature of the stage by 
using the Metropolis algorithm [1]. 
Metropolis et al. [1] showed that thermal equilibrium 

of a system can be achieved by allowing the transition 
from the state iX  to the state 1+iX  repetitively with the 
following probability [1]. 
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where )()( 1 ii XfXff −=∆ + , 
)(Xf : internal energy of state X , 

:k  Boltzmann constant. 
 
In SA algorithm for LP optimization, we minimize the 

following objective function: 
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where 
X  : loading pattern, 

( )XsbEOC  : EOC soluble boron concentration, 

( )XsbBOC  : BOC soluble boron concentration, 

limsb  : BOC soluble boron limit, 

lB∆  : lth burnup step size, 

( )l
mP X  : pin peaking factor at assembly m in 

burnup step l, 

limP  : pin power peaking factor limitation, 

1θ  : pin power peaking factor penalty 
coefficient, 

2θ  : BOC soluble boron concentration 
penalty coefficient. 

 
2.2 Screening Technique for LP optimization by SA 
  

If one can judge from the 2D neutronics evaluation 
that a given LP should be rejected, there is no need to 
evaluate the LP with 3D neutronics evaluation model 
and one can save computation time. The screening 
technique is based on this idea. 

In actual coding for SA LP optimization, the 
acceptance with the probability of Eq. (1) in the 
Metropolis algorithm is implemented using a random 
number. If the new objective function value newJ  is less 
than ξlncurrcurracp CJJ −= , then the new LP is 

accepted, otherwise rejected, where currJ ,  currC , and 
ξ  are the current objective function value, current 
artificial temperature, and a random number 
respectively.  

Because there are some discrepancy between the 
objective value from the 2D evaluation, DJ 2 , and that 



 
 
from the 3D evaluation, DJ 3 , we should be 

conservative when we reject the LP by judging from 
DJ 2 . 

Suppose the variable DD JJJ 23 −=∆  has a normal 
distribution with the mean value and standard deviation 
of J∆  and σ  respectively, then we conclude that 

 
3D 3D

minPr obability p{J J } 2.28%< = ,                    (3) 

where σ223
min −∆+= JJJ DD . 

 
Ignoring this probability, we can reject the new LP if  
DJ 3

min  is greater than acpJ  because it means that the 
probability of the new LP’s being accepted after the 3D 
evaluation is less than 2.28%. However, in case that 

DJ 3
min  is less than acpJ , one has to evaluate the new LP 

with 3D neutronics model because it means that the 
probability of the new LP’s being accepted after the 3D 
evaluation is greater than 2.28% and one cannot ignore 
the probability any more. J∆  and σ  can be calculated 
while the initial temperature is determined and they can 
be revised during the optimization procedure. 
 
2.3 Applications and Results 
 

Figure 1 is the flow chart of the SA algorithm with 
the screening technique for LP optimization. 
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Figure 1. SA algorithm with the screening technique. 

 
The screening technique shown in Fig. 1 is 

implemented into the UNCARDS(Unified Nodal Code 
for Advanced Reactor Design and Simulation ). 

To investigate the effectiveness of the screening 
technique, LP optimization calculation was performed 
against cycle 7 of Yonggwang unit 4. The efficiency of 
the screening technique for LP optimization by SA was 
examined through independent twenty optimization 
runs. Table 1 shows that around 45% of the LPs were 
screened out on the average, which means that one 
could avoid evaluating them with time-consuming 3D 
neutronics model. 

 
Table 1. Effectiveness of screening technique for LP 

optimization by SA a  

 Number of 
Stage 

No. of LPs 
Accepted 

No. of 3D 
Evaluation 

Mean 
Value bσ±

61 14±  4039 934±  8260 2500±

 No. of LPs 
Sampled 

Elapsed Timec 
(min) 

Efficiencyd 
(%) 

Mean 
Value bσ±

483915226± 620 200±  44.7 8.6±  

a) Results are derived from 20 independent optimization runs. 
b) standard deviation 
c) On thirty Pentium IV CPUs 
    (twenty 2.4GHz CPUs and ten 3.0GHz CPUs) 

d) 10031 ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Sampled
EvaluationD  

 
3. Conclusion 

 
In this paper, a screening technique for LP 

optimization by SA is proposed and it is implemented 
into the UNCARDS code. Numerical test of the LP 
optimization by SA with the screening technique 
against the cycle 7 of Yonggwang unit 4 shows that the 
screening efficiency is around 45%, which leads to 
saving of roughly equal amount of computation time. 
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