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1. Introduction 
 
There is growing interest in developing pebble bed 

modular reactors (PBMRs)[1] as a candidate of very 
high temperature gas-cooled reactors (VHTRs). A 
typical pebble bed reactor core houses a multitude of 
graphite balls which are cycled continuously through 
the core. Until now, most existing methods of nuclear 
design analysis for this type of reactors are based on old 
finite-difference solvers or on statistical methods. 

 
There is strong desire of making available high fidelity 
nodal codes in cylindrical (r,θ,z) geometry.  Recently, 
Kim and Cho[2,3] extended the analytic function 
expansion nodal (AFEN) method developed quite 
extensively in Cartesian (x,y,z) geometry and in 
hexagonal-z geometry to treat the cylindrical geometry 
in (r,z) coordinates.  

 
This paper presents further work[4] to extend the 

AFEN method to the full three-dimensional cylindrical 
(r,θ,z) geometry. The AFEN methodology in this 
geometry as in hexagonal geometry is “robust” (e.g., no 
occurrence of singularity), due to the unique feature of 
the AFEN method that it does not use the transverse 
integration[5]. The usual nodal methods based on 
transverse integration lead, however, to an impasse[6]. 
 

2. Basic Theory and Method 
 
The AFEN formulation in the (r,θ,z) coordinates 

system starts from the following two-group diffusion 
equations in a homogenized node (see Fig. 1) : 
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All the notations are standard. The equations can be 
decoupled as follows: 
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Fig. 1 A node in (r,θ,z) coordinates system 
 

A general solution to Eq.(2)  can be represented in 
terms of analytic basis functions that can be obtained 
using the method of separation of variables. For 
practical implementation, we choose the modal solution 

µξ  of a node expressed in a finite number of terms: 
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Note that each term in Eq.(3) is an analytic solution 

of Eq.(2). The thirteen coefficients in Eq.(3) are made 
to correspond to the thirteen nodal unknowns for a 
node : i) one node average flux, ii) six surface average 
fluxes, and iii) six interface flux moments. Alternatively, 
the thirteen nodal unknowns can be chosen as: i) one 



node average flux, and ii) twelve half-interface average 
fluxes (two half-interface average fluxes for each of the 
six surfaces). 

In an innermost node, the inner radial surface 
degenerates (disappears) into the z-axis and thus less 
nodal unknowns are necessary. In addition, usually the 
innermost nodes are smaller in size. Moreover, some 
terms in Eq.(3) become singular at r=0. Therefore, for 
such a node the six (i.e., 4aµ , 8 2aµ × , 10aµ , 11aµ , and 12aµ ) 
terms in Eq.(3) are excluded. The remaining seven 
coefficients are made to correspond to : i) one node 
average flux, ii) two half-interface average fluxes on 
the outer radial surface, and iii) four surface average 
fluxes on the other surfaces. 
 

3. Implementation in the TOPS Code 
 
After the coefficients in Eq.(3) are expressed in terms 

of the nodal unknowns, we build as many solvable 
nodal coupling equations as the number of these nodal 
unknowns to be determined. The nodal coupling 
equations in AFEN typically consist of the nodal 
balance equation, the interface current continuity 
equation, and the interface current moment continuity 
equation (or two half-interface current continuity 
equations). 

 
Development of a computer code called TOPS is in 

progress following the method described in Section 2. 
The details and numerical results will be presented at 
the meeting. 
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