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1. Introduction 
 

The Coarse Mesh Finite Difference (CMFD) 
formulation or the nonlinear nodal method [1] has been 
widely used in the solution of two-group problems 
providing high solution efficiency. In this paper, the 
two-group formulation is applied to multigroup 
problems as a means of acceleration. First, a new form 
of the semi-analytic nodal method (SANM) [2] is 
derived to solve a multi-group one-node problem, and 
the SANM kernel is then implemented within the 
framework of the two-group CMFD formulation 
involving dynamic group condensation [3]. The 
efficiency of this scheme is investigated with a set of 
fast reactor problems. 

 
2. One-Node Semi-Analytic Kernel 

 
With the source iteration scheme, the SANM can be 

applied easily to multi-group problems given the fission  
and scattering sources approximated by high order 
polynomials. For a one-node problem, a new SANM 
formulation is derived below with an emphasis on the 
simultaneous solution of the three directional solutions. 

 
The transverse-integrated multi-group diffusion 

equation can be written as: 
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Here, the right hand side, defined as the effective 
source term, is approximated by a quadratic polynomial 
in the following form: 
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Given this approximation, one can obtain the analytic 
solution Eq. (1) which consists of the homogeneous and 
particular solutions of the following form: 
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The seven coefficients of the transverse integrated one-
dimensional (TI1D) flux, Eq.(3), can be expressed in 
terms of the node average flux, two interface incoming 
currents, and four Weighted Residual Method (WRM) 
equations. 

Once the coefficients are determined, the node 
average flux and outgoing partial currents can be 
obtained from the following relations: 
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Here, in the three dimensional problem, the linear 
system consisting of each directional outgoing currents 
and the node average flux are reduced to the following 
single matrix form: 
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The unknowns of Eq.(5) can be determined uniquely 
through the backward substitution. The traditional 
method is to obtain the approximate solution of Eq. (5) 
by  first determining the node average flux using the 
incoming currents and then updating outgoing currents 
using the new node average flux. We shall denote the 
simultaneously solved solution by  SANM1 and the 
conventional solution by SANM2 for the comparison of 
the efficiency of these methods in Section 4.  

 



 
 

3. Two-Group CMFD Formulation 
 

The multi-group outgoing currents and node average 
flux determined by the one multi-group nodal kernel are 
then condensed to two-group ones by using them as the 
outgoing current and flux spectra. The two-group cross 
sections for CMFD equation are generated by spectrum 
weighting as follows: 
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In addition, the two-group corrective nodal coupling 
coefficients are determined by the following equation: 

ˆ ( )R L
sG G G sG

sG R L
G G

D JD φ φ
φ φ
− +

= −
+

%     and                  (7) 

R R L L
G G G G

sGR L
G G

sG R L
G G

β φ β φ φ
β β
φ φ

+
−

+
Γ =

+
 

In the CMFD problem, the two-group interface currents 
are represented using the corrective coefficients as the 
following form: 
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Once a two-group CMFD solution is obtained, the 

multi-group flux and currents are computed from 
previously stored flux and outgoing current spectra, and 
then multi-group nodal iterations are performed. 
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The following flowchart represents the entire 

process of the alternating two-group CMFD and 
multigroup nodal calculations.  
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Figure.1 Flowchart of the nonlinear iteration scheme 

 
 

4. Numerical Results and Conclusion 
 

In order to examine the efficiency of the presented 
multi-group nonlinear nodal method, 9-group 
eigenvalue problems has been analyzed and the 
convergence characteristics were evaluated. The model 
core has the same geometry as that of PEACER300, a 
fast-spectrum transmutation reactor characterized by a 
pan-cake type core shape, but the cross sections used 
were obtained from the BFS75 9-group problem. 

The eigenvalue, the number of outer iterations and 
computing time are listed in Table 1. First, it is noted 
that the number of outer iterations and the number of 
nodal updates are reduced significantly and the 
calculation time as well. Another point noted is that 
SANM1 spends more computing time than SANM2 in 
the nodal calculation due to the matrix solution whereas 
the time is less in the nonlinear nodal. This implies that 
the better convergence characteristics of SANM1 
appears significant in the nonlinear nodal calculation 
involving much fewer outer iterations. 

 

Nodal Nonlinear Nodal Nodal Nonlinear Nodal
k_eff 1.05436 1.05436 1.05436 1.05436

Iterations 536 15 543 20
Nodal updates 536 28 543 37

Time (sec) 217.50 16.41 193.53 19.46

Nodal Nonlinear Nodal Nodal Nonlinear Nodal
k_eff 1.05411 1.05411 1.05411 1.05411

Iterations 661 18 670 21
Nodal updates 661 32 670 40

Time (sec) 1053.48 74.91 947.40 84.27

9G 3D Reactor 4 Node/FA

SANM1 SANM2

9G 3D Reactor 1 Node/FA

SANM1 SANM2

 
Table.1 Comparison of nonlinear nodal calculation 

 
In conclusion, a new SANM formulation for the 

one-node problem has been derived and a two-group 
CMFD formulation with the multi-group SANM kernel 
has been established. The multi-group calculations 
demonstrate that the computational efficiency increases 
significantly by the two-group CMFD formulation and 
the convergence behavior is superior with the new 
SANM formulation involving simultaneous solution of 
three directional outgoing fluxes and node average flux. 
This method proposed here will further be extended to 
multi-group transient calculations which would require 
excessive computing time. 
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