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1. Introduction 

 
KAERI (Korea Atomic Energy Research Institute) is 

now under the construction of ATLAS (Advanced 
Thermal-hydraulic Test Loop for Accident Simulation) 
as an effort to resolve the safety issues in APR1400 
(Advanced Power Reactor 1400MW) with the aim of 
initiating the experiment soon this year. One of the 
experiments planed is a large break LOCA (Loss of 
Coolant Accident) test [1]. This large break LOCA 
requires much larger core power, which is almost 
impossible to be installed in ATLAS core in the form of 
electric heaters because of the limitation of electric 
power supply and so on. Thus, it is planed that the 
initial condition of large LOCA test is set at 8% power 
level. 

Therefore, this study is to analyze the scalability of 
large LOCA of ATLAS at 8% initial power level using 
RELAP5/Mod3.3[2]. For the sake of the comparison, 
large LOCA at initial power level 100% was also 
referred in reference [3]. 

 
2. Steady State Analysis 

 
The nodalization for APR1400 and ATLAS is 

presented in figure 1. The variable operation parameters 
according to power level are core power, enthalpy of 
main feedwater inlet, Steam Generator (SG) 
recirculation ratio, pressurizer water level, steam 
pressure in SG dome, and the temperatures in hot and 
cold legs. Detailed values for these operation 
parameters are attributed to references 4 and 5. 

The steady state at 8% power level was obtained 
from the full power input with the modification in 
above operation conditions[3]. But, no change was 
taken in geometry inputs except for SG heat transfer 
areas and RCP (Reactor Coolant Pump) parameters. In 
order to satisfy the hot and cold legs temperature, SG 
heat transfer rate was artificially raised for the heat 
balance, as mentioned above. And, for the same 
primary flow rate, the head of reactor coolant pump was 
slightly increased compared with full power steady state. 

Some gaps was resulted in on pressure drop in loop. 
Such gaps were mainly caused by not minor loss 
coefficient but friction. Thus, the pressure drops in fuel 
and U-tube are different from those at full power. 

SG narrow range water level was set 37% (required 
condition is 44%), because trying to set the level 44% 
induced the asymmetry of both SG water levels. The 
calculated SG recirculation ratio was 17, while the 
required value at 8% power level was 32. However, no 
adjustment for the recirculation ratio was carried out, 
since the recirculation ratio was not a fatal parameter in 
large LOCA. 

 
3. Transient Analysis 

 
As shown in figure 2 the pressurizer pressure is not 

far different in full power and 8% power, and good 
scalability is maintained between two systems. Break 
flow shown in figure 3 shows slightly different results 
according to the power level, and it is readily caused by 
the difference in decay heat. However, the scalabilities 
for 100% power level and 8% power level are relatively 
good.  

Water level is easy to be affected by just a small 
perturbations in other parameters, and the resulted 
downcomer and core water levels in figures 4 and 5 
show also very large gaps between power level and 
system. The water level at the 100% power level is 
lower than that at 8 % level, which means the higher 
power level induces more water depletion in 
downcomer and core. And the water level in ATLAS is 
lower than that in APR1400. 

Detailed discussions are described in reference 6. 
 

4. Conclusion 
 
This study analyzed the scalability of large LOCA at 

8% core power level for APR1400 and ATLAS with 
the comparison of full power case. Most of the 
parameters showed relatively good scalability. However, 
the water levels in downcomer and core, which are very 
sensitive parameters, showed some gaps. As a whole 
the lower power level resulted in more effective core 
recovery, and the smaller system resulted in less 
effective core quenching. 
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Figure 1. Nodalization of APR1400  and ATLAS for RELAP5 Analysis 
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           Figure 2. Pressurizer Pressure                                                 Figure 3. Break Flow from Reactor Side Break 
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Figure 4. Downcomer Water Level                                                               Figure 5. Core Water Level 
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