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Physical Experiments and Computer Simulations for Large Deformation Problems
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ABSTRACT

In this paper, computer simulations with the absolute nodal coordinate formulation for large deformation problems in flexible
multibody dynamics are compared to the real experiments. A high speed camera was employed to capture the deformed shapes of a
thin beam, a plate, a rotating chain, and a paper strip. The measured data was used to calculate precise values for stiffness and
damping ratio of the objects. Also a rotating strip and a helicoseir problem were formulated for computer simulation, and the

computational results are also compared to the experiments.

1. Introduction

The absolute nodal coordinate formulation {ANCF) is
a modern finite element technique for modeling large
deformation and large displacement problems in flexible
multibody dynamics. It produces finite elements that can
represent arbitrary large displacements relative to the
global frame of reference. The elements employ finite
slopes as nodal variables and are generalizations of
ordinary finite elements that use infinitesimal slopes. In
the ANCF, in contrast with other large deformation
formulations, the equations of motion contain a constant
mass matrix and a constant vector of generalized gravity
forces as well as zero centrifugal and Coriolis inertia
forces. Thus, the only nonlinear term in the equations of
motion is the vector of elastic forces; it is, however, quite
cumbrous to calculate.

In this paper, we suggest a geometrical treatment of
the absolute nodal coordinates of a 2D beam. We split
them into vectors of nodal displacements and vectors of
nodal slopes. The position of an arbitrary point in the
beam centerline is then expressed as a linear combination
of the nodal vectors with the shape functions used as
coefficients. Strain energy, elastic forces and their
Jacobian matrices are calculated explicitly using tensor-
like relations. We reformulate some known models of
elastic forces in our notes and also introduce a couple of
new ones. Another subject of the current paper is a
rectangular clamped plate undergone large vibration due
to a heavy rigid-body weight attached to one of the free
edges of the plate. The Kirchhoff model based on ANCF
is employed to simulate the plate. We study also the
applications of beam finite elements in ANCF such as the
helicoseir problem and the rotating strip problem.
Helicoseir is a heavy inextensible chain rotating around
the vertical axis with only one fixed top point. In spite of
its simple physical nature and very interesting behavior,
it has a cumbrous mathematical description. Probably,
this is the reason why this problem has almost been not
mentioned in the literature.

The experimental properties of the helicoseir are as
follows. Depending on the initial driving angular
velocity of rotation, the chain can take different shapes
of relative quasi-equilibrium. The shapes look like one or
more half-waves. It is naturally, that a mechanician’s
mind is very interested in such event and wants to
determine its properties like the exact shape of the
helicoseir or conditions of its existence.

2. Large deflection of a thin beam

Consider as a finite element the 2D Euler-Bernoulli
beam shown in Figure 1. The line running through its
center is parameterized by the value p =0.../, where / is
the beam’s initial length. The vector of the absolute
nodal coordinates contains position vectors r, r; (of the
end points) and the tangent slope vectors 7o, 7; at these
points.

Note that the components of these vectors are not
supposed to be small and that tangent vectors may have
non-unit lengths. The tangent vectors specify both the
declinations and longitudinal deformations of the end
points of the element.
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Figure 1. 2D beam finite element

We use the following index notation for the vector of
the absolute nodal coordinates of the beam:
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It can be shown that the position of an arbitrary point
on the element is given by the following formula:
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with global shape functions defined as follows:
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For the sake of simplicity, however, we will use

slightly different notation to express the same thing:
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I represents the 2x2 identity matrix. The equations of
motion of the beam element can be obtained from the
following Lagrange equations
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where kinetic energy T is defined by the equation
=1 Ll UYTEdp | U represents ‘strain energy, and,
finally, the virtual work of external gravity forces is
given by W = J:6r7,ugdp, where g is the linear

density in kg/m. These equations assume the matrix
form:
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The block elements of the mass matrix M;; and the
vector of generalized gravity forces QF are defined as:
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The elements of the vector of generalized elastic

forces Qf =0U/Oe; are the most cumbrous ones to

deal with due to complexity of the strain energy term U.
The latter decomposes due to the stretching of the beam
and the former due to its bending:

1} 1}
U=U*+U*== |EAc*dp+— |EIxd,
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where ¢ represents with the longitudinal deformation and
K (ygpresents the transverse curvature. The longitudinal
EA and the transverse ET stiffnesses are assumed to be
constant within the beam element. More detail derivation
of equations of motion and elastic forces are well
explained in referencef(1].

To simulate the effects of internal and external
friction, we used a linear model of damping forces:

Qdamp =De

In this model, a particular form of proportional
Rayleigh damping. It is employed and the system
damping matrix assumes the following form:

D=aM+pgC )

which includes the mass matrix M and the stiffness
matrix C multiplied by the coefficients defined below:

o = 2019y (6,0, —Gr0y)
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which themselves depend on the frequencies w; and w,
as well as on the damping ratios ¢; and §; for the first two
modes of the system that appear from the dynamic modal
equations:
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The ratios ¢ and & should be calculated from the
experimental data.

The most important aspect of any large deformation
test is the material. It must be very flexible and elastic,
but not plastic. In this test, we have chosen to use a very
thin spring-steel beam, which has been heat-treated to
increase its strength and durability.

An accelerometer is usually used to measure
accelerations and displacements. However, the beam
used in this research is too thin to install an
accelerometer. Therefore, a high-speed camera is used.
The camera also aids in analyzing the displacement of
the global deformation.

To compare the efficiency and accuracy of the beam
with the ANCF, a stepped cantilever beam shown in
Figure 2 was modeled. The stiffer part of the beam was
length of 200mm and diameter of 1.4mm, and the thinner
part had length of 400mm and diameter of 0.6 mm. For
the connection of two parts, a hole, which is 13 mm in
depth, was machined by the EDM (electric discharge
machine) in the thick heam. The thin beam was inserted
into the hole and fixed tightly with glue in order not to be
affected by the instability of the connection.

In the hybrid coordinate formulation, the deformation
of stiffer part was represented with modal coordinates,
and the deformation of thinner part was modeled with
ANCF.
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Figure 2. Configuration of a stepped beam
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To make the large displacement for a stepped
cantilever beam with a base motion, we changed the
properties of the beam., which represents the vertical
positions of the nodes. As shown in the figure 3, there are
just negligible differences in two results.
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Figure 3. Tip deflection at the tip

3. Large deflection of a thin plate

Let us consider a plate element of size axbxh
(lengthxwidthxthickness). Since it is represented only by
its middle surface, we will also consider this a thin plate.
The surface of the plate is parameterized by the values p,
and p,. Let O, be the origin of the configuration space of
the element. Then let us imagine a coordinate curve
which is parallel to the p, axis so that we may define the
position r (p;, p,) of an arbitrary point on the plate
relative to the origin O of the inertial reference frame.
Extending of the idea of absolute nodal coordinate
formulation to 3D beams gives us the following
equation:

[
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where §, =5 (p‘,a) are the Hermite shape functions
for the p,-beam:

sip ) =ss(I-ply=1-38*+2¢°, si(p, ) =362 -283, ¢ _p-
s(p)=-ss(l-pD)=1(-28+8%), sdpy=1(£-¢%), 4

and where I is the 3x3 identity matrix and p;, and 7,

are the absolute nodal coordinates of the p;-beam (global
displacements and slopes of the end points).

The latter vectors p,(p,,6) and 7,(p,.b)
depend on the parameter p,, which defines the p;-beam.
For example, p, is obtained from the bold-faced p,-
beam shown in Figure 4.

Time(sec)

Figure S. Positions of the tip versus time
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The x, y, and z positions of the tip of a
40cmx20.4cmx0.04cm plate with a 260g mass attached
to it is shown in Figure 5.

4. Motion of a rotating chain
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Figure 6. Possible 2D configurations of helicoseir

To start numerical simulation of the helicoseir’s
motion, one needs to define its initial configuration and
velocity. We set the initial configuration corresponding to
numerical solution of the two-dimensional model. To
describe this part of research we need to repeat some
important results obtained in our previous paper [2].

5. Avrotating strip

Figure 7. Comparison of a rotating strip

In this chapter, the results of simulations and
experiments with thin rotating strip are presented. They
do not pretend to be very complete and accurate because

the thorough analysis will require taking into account
non-isotropic material properties of the strip. The results
are shown here to prove the adequateness of the
proposed beam model in principle.The parameters of the
model are: length of 0.7 m, width of 15 mm, thickness of
0.1 mm, material density of 750 kg/m®, Young modulus
of 10 Pa, angular velocity of 5 rpm, amount of elements

.of 16 are used in the simulation. The ratio ‘CPU time’ /

‘model time’ is about 450 using a Pentium 4 (CPU 1,7
GHz).

6. Conclusions

We proposed new finite elements of thin three-
dimensional beam element and plate element in the
absolute nodal coordinate formulation. They have 14 and
48 degrees of freedom, respectively, and incorporate
Euler-Bernoulli beam theory and Kirchhof plate theory.
The elements allows simulating thin very elastic beams
and plates, which gave nice results compared to physical
experiments.

We also formulated a rotating strip problem and a
helicoseir problem with the ANCF, which are also shown
in good agreement with physical experiments.

Thus the authors can conclude that numerical
simulation shows a good ability of the proposed elements
to represent large displacement and deformation
problems in the area of flexible multibody dynamics.
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