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SPECTRAL ELEMENT DYNAMIC ANALYSIS OF THE PIPELINE
CONVEYING INTERNAL UNSTEADY FLOW
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ABSTRACT

In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid.
The spectral element matrix is formulated by using the exact frequency-domain solutions of the pipe-dynamics
equations. The spectral element dynamic analyses are then conducted to evaluate the accuracy of the present spectral
element model and to investigate the vibration characteristics and internal fluid transients of an example pipeline system.

I. INTRODUCTION

There have been extensive studies on the modeling and
analysis of the flow-induced vibrations of pipeline
systems over the past half-century: an extensive review
on this subject can be found in Paidoussis and Li [1]. In
most existing pipe-dynamics theories, the structural
vibration of pipeline itself has been the main concern,
neglecting the transient dynamics of internal fluid which
should be coupled with the structural vibration of
pipeline. To account for the effects of the coupling

between the pipeline vibration and unsteady internal flow,

Lee et al. [2] derived a set of coupled pipe-dynamic
equations for the axial, radial, and transverse vibrations
of pipeline as well as for the transients of unsteady
internal fluid pressure and velocity. The coupled pipe-
dynamic equations were further generalized by including
the circumferential strain effect caused by the internal
fluid pressure [3] and, later on, by including the radial
shell vibration and initial axial tension [4].

In the literature, the FFT (fast Fourier transforms)-
based dynamic stiffness method is often named spectral
element method (SEM) [6-7]. Because the exact dynamic
stiffness matrix is formulated from the exact dynamic
shape functions which satisfy the governing equations of
motion, it represents the dynamic behavior of a structural
element exactly. Thus, the SEM is often justifiably
referred to as an exact solution method [5-7].

The purposes of the present paper are (1) to develop a
spectral element model for the axial and transverse
vibrations of a pipeline conveying internal unsteady fluid,
and (2) to conduct spectral element analysis to
investigate the structural dynamic characteristics and the
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internal fluid transients of an example pipeline problem.

II. PIPE-DYNAMICS EQUATIONS

We consider a straight pipeline subject to a small
amplitude vibration. The equations of motion for a
pipeline and the relevant boundary conditions can be
derived from the Hamilton’s principle. The kinetic ener-
gy T and the potential energy U for the pipeline system
are given by

T=%f (i + 4 ) dx

2
EA
U=_F,[,L V- u’+lu'2+lW'2J dx (1)
2 % E4 2" 72

EI,

OW is the virtual work done by the flow-induced forces
acting on the pipe wall and by the resultant forces and
moments applied at the boundaries.

Introducing Egs. (1) and 6W into Hamilton’s principle
and integrating by parts gives

ELw" +(pA=T, +m,c )W + paw
m,(2cW +ew +ccW)+miv=0  (2)

(EAI, +T )u"—mpii +mwg},w’+mW%c2 =0

By applying the Newton’s law of motion to the control
volume (fluid element), the equations of fluid can be
obtained as

1., 1 ., 1. f

n
¢"-—c¢c'——c¢'——c—
at a? a’ a’D

1
gy w-=-2vu" —Lcu ————cu '=0
a’ a’ a’

cc
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pA+aim, (c¢'-2vi')=0 3)

Equations (2) and (3) represent a set of coupled
nonlinear pipe-dynamics equations for the pipeline
conveying internal unsteady fluid. To linearlize the pipe-
dynamics equations, the fluid velocity and pressure are
assumed as

plx)=p,+p, (1) @

where c[x, t) and p, x, f) represent the small
perturbations with respect to constant steady-state values
¢, and p,, respectively. Accordingly one may assume that
¢y < c,and p, < p,. Substituting Eq. (4) into Eq. (2) and
Eq. (3) and neglecting small nonlinear terms a set of
linearized pipe-dynamics equations as follows:

clx, t)=c, +c,{x, 1),

Ell,vt/'”+(paA ~T +mc’ )u/' +2m W +miv=0
(EAp +T;>4"-mpii +m,g,W+m,
v Co o f

-2 ———
y ;
" o'tD

p,A+am (), —2vi')=0

1cgc{, + mwicf =0
D 2D

.. 5)

.. & . G, o (

c,6, ——z—g—zw'—Zvu"——%u' =0
a a a

III. FORMULATION OF SPECTRAL ELEMENT
MODEL

The general solutions of Eq. (5) can be assumed in the
spectral forms as

N

wlx, t) = ) w, (x) e, u(x, t) = ZUH (x) e

n=1 n=l

N N
¢, ()= C )™, p,(xi)=) P lx) e
n=l n=t
where W, (x), U,(x), C,(x) and P,(x) are the spatially
dependent spectral components of w(x,t), u(x,z), cAx,?)
and px,t), respectively. Substituting Eq. (6) into Eq. (5)
yields

(6)

aW" +a, W' +aioW —a,0'W =0

bU"-b,0’U+bW' +bC+b,=0

C"+cioC +(cjo-c,0’)C @)
—cioW' +cjoU"-cU'=0

ioP+d (C' +cioU' )=0

where the following definitions are used:

= - 2 = =
a,=El, ,a,=p,A-T +mp,,a,=2m.,.a,=m

o3

b, =EA,, +T,,b, =-m,,by=m,g,,b, =m“’£c°

r? D
f . e _f 1
b5 =meBC0,Cl ———2,6‘2 ——acha:cs =_a_2(8)
¢, :—ig—;—,c5 =-w.d, =p,a’
a

The general solutions with removing nonhomogeneus
terns, are assumed as

W(x)=We*,U(x) = Ue™,Clx) = Ce™, P(x) = Pe™ (9)

where k is the wavenumber. Substituting Eq. (9) into Eq.
(7) gives an eigenvalue problem from which one can
obtain two dispersion equations. The first dispersion
equation provides the wavenumbers (k), &y, k3, k4) for the
beam bending vibration modes, whereas the second
dispersion equation provides the wavenumbers (ks, ks, &7,
ks) for the axial vibration-fluid velocity coupling modes.
By using the eight wavenumbers, the general solutions
can be expressed as following forms:

Ulx) =3 T, [ () ).} (10)

and {¢,} and {@,.} are constant vectors to be eliminated
later on. Now, consider a finite pipeline element of length
I. The spectral nodal degrees of freedom (simply, spectral
nodal DOFs) are defined by (1)
w(0)=w,, 8(0)=6,, U(0)=U,, c0)=C,, P0)=F

W(l)= W, 9(l)= ,, U(l)'_‘Uz, C(l)= C,, P(l)= P,
where O (x) = W'(x) denotes the slope. Substituting Eq.
(10) into Eq. (11) gives the relationships between the

spectral nodal DOFs vectors and the constants vectors as
follows:

{d. )=, @){s.} {d.}=[H. (]{s.} (2

where

(13)
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with e =¢¥  (j=1,2,3,..,8) (14)

J

From Egs. (10) and (12), one may obtain

w(x)=[N,(xo)d,}
U(x)=[N,(xo)ld,} (15)
Clx)=[N.(x0)la,}

where

[NV, (o)l=[e,()][H, ()]
[V, (o)l=[e, A, ()] (16)
[N (s0)l=[e. @D, (@) A, @)

The variational approach can be used to formulate the
spectral element matrix by using the displacements and
fluid fields given by Eq. (15). Substituting Eq. (16) into
the weak form of Eq. (12) and taking some manipulation
gives an equation in the form as

[s(@)d}={r} 17

where {d } and { f} are the spectral nodal DOFs vector
and the spectral nodal forces vector, respectively, and
[S(w)] is the spectral element matrix defined in the form
of

[S(w)]{:” 0} (18)

21 po]

Assembling the spectral element equation (17) and then
applying the appropriate boundary conditions will
provide a global system dynamic equation.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A uniform straight pipeline simply supported at both
ends is considered as an illustrative example problem.
The pipeline has the length L = 6000mm, the internal
diameter D = 32.12 mm, the thickness ¢ = 1.4 mm, the
Young’s modulus £ = 117GPaq, and the mass density of
pipeline m, = 0.0515 kg/m. The mass density of fluid is
m,, = 1.318 kg/m. It is assumed that the pipeline is
subject to the constant axial tension 7, = 82 N.

The high accuracy of the present spectral element
model is verified first by comparing the eigenfrequencies
obtained by using the present SEM with those obtained
by the conventional FEM and also with the exact
analytical results from Blevins [8].

Table 1 compares the eigenfrequencies of the lowest
four transverse displacement (bending) modes, the first
axial displacement mode, and the first fluid mode
obtained by the present SEM, the FEM, and the exact
theoretical result from Blevins [8]. The FEM results are
obtained by increasing the number of finite elements
from 10 to 100, as shown in Table 1. When the (steady-
state) flow velocity is ¢, = 0 m/s, ‘the eigenfrequencies
obtained by the present SEM are found to be identical to

the exact ones by Blevins {8]. It can be also observed
from Table 1 that the FEM results converge to the SEM
results at all flow velocities as the number of finite
elements is increased. For the present example problem,
more than fifty finite elements should be used in FEM to
achieve the same high accuracy of the fifth
eigenfrequency by SEM.

Table 1. Eigenfrequencies(Hz) of the pipeline obtained by the
present SEM, FEM and the exact theory [8]

Fluid
Velocity| Method | N a)l(w) a)z“") a);w’ a)‘:w) 0)6(” a)l(z“
(mis)
Exact[25]] . 1.47 | 5.89 {13.26 | 23.57 51.98 150.73
SEM 1 | 1.47 | 5.89 {13.26]23.57 51.98 150.73
0 10| 1.47 | 5.89 {13.27]23.61 52.03 157.39
FEM 20| 1.47 | 5.89 113.2623.58 51.99 150.77
501 1.47 | 5.89 |13.26]23.58 51.98 150.74
100] 1.47 | 5.89 | 13.26(23.57 51.98 150.74
SEM 1 | 1.37 ] 5.81 |13.18{23.50 | 52.00+0.47/ {150.74+0.02{
10} 1.37 | 5.81 |13.19{23.54 | 52.03+0.47 {150.89+0.02{
10 FEM 20| 1.37 | 5.81 |13.18]23.50 | 51.99+0.47i {150.77+0.02{
50| 1.37 | 5.81 | 13.18123.50 | 51.98+0.47 |150.74+0.02{
100] 1.37 | 5.81 | 13.18 [ 23.50 | 51.98+0.47; |150.74+0.02{
SEM 1 | 0.00] 5.18 |12.59]22.93 | 52.00+1.18i j150.74+0.04i
10 [ 0.00 | 5.18 | 12.60 {22.97 | 52.02+1.18/ |150.89+0.04/
28.65 FEM 20| 0.00 [ 5.18 112.59}22.93 | 51.98+1.18i |150.77+0.04/
50| 0.00 | 5.18 {12.59122.93 | 51.97+1.187 |150.74+0.04/
100] 0.00 | 5.18 {12.59]22.93] 51.97+1.18i |150.74+0.04i

Note : N = number of finite elements; (w) = transverse displacement
mode; (1) = axial displacement mode; (¢) = fluid mode

It can be also observed from Table 1 that the real parts
of eigenfrequencies (i.e., natural frequencies) are reduced
in magnitude as the fluid velocity is increased. The first
natural frequency becomes zero at ¢, = 28.65 m/s at
which the divergence instability occurs as discussed in
the following.

—— SEM 2 elements
FEM 2 elements
FEM 5 elements
FEM 10 elamaents
---. FEM 15 alements

Transverse Receptance (wiF)

(-] 5 10 15 20 26 30
Frequency (Hz)

Fig. 1 Comparisons of the transverse displacements at x = L/5
in the frequency domain obtained by the present SEM
and FEM

Figure 1 compares the dynamic responses of the
transverse displacement in the frequency and time
domains obtained by the present SEM and the FEM. It is
assumed that the fluid velocity is ¢, = 10m/s. To excite
the pipeline, a point load f{#) of magnitude 1 &N is applied
for 0.001 seconds at x = L/5. The dynamic responses are
then measured at the excitation point, i.e., x = L/5. It is
certain from Fig. 1 that the dynamic responses obtained
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by the FEM converge to the SEM results as the number
of finite elements used in the FEM is increased. Thus,
both the results shown in both Table 1 and Fig. 1 prove
the high accuracy of the present spectral element model.
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Fig. 2 Fluid velocity dependence of the lowest three
eigenfrequencies of pipeline

Figure 2 shows the fluid velocity dependence of the
real and imaginary parts of the lowest three
eigenfrequencies. The divergence instability may occur
when the imaginary part of an eigenfrequency is negative
and the real part is zero, whereas the flutter instability
may occur when the imaginary part is negative, but the
real part is not zero. For the present example problem,
Fig. 2 shows that the divergence instability occurs in the
first bending mode at ¢, = 28.65m/s (i.e., divergence
velocity, ¢p), and the flutter instability occurs in the
coupled mode of the first and second bending modes at ¢,
=57.33m/s (i.e., flutter velocity, c-).

When the fluid velocity at the inlet is controlled by ¢,
= 10(1 + 0.001sin1047f) m/s, the axial displacement,
perturbed fluid velocity are shown in Fig. 3. Figure 3
shows that all responses tend to increase with time. This
is because the excitation frequency of the inlet fluid
velocity 527 almost coincides with the first natural
frequency of the fluid when ¢, = 10 m/s (see Table 1) so
that a resonance phenomenon occurs.

V. CONCLUSIONS

In this study, a spectral element model is developed
for the straight pipelines conveying internal unsteady
fluid. The high accuracy of the spectral element model is
then proved by comparing the eigenfrequencies obtained
by the present SEM and the conventional FEM. Finally,
the spectral element analysis is conducted to investigate
the stability and forced vibration responses of an
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Fig. 3 'i’he axial displacement and perturbed fluid velocity at x
= L/2 when ¢c,= 10(1+0.00! sin102ns) m/s

example pipeline conveying internal unsteady fluid.
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