
558

1. INTRODUCTION

Resource leveling in construction engineering is an

effective scheduling strategy only when the project duration
is fixed without regard to limitations in the availability of
resources. Resource leveling problems need to be solved
accurately to reduce the maximum demands for a given
resource on any given day. A schedule that was generated
using the early start time of an activity generally tends to
create conflicts by demanding large numbers of resources
(for example, workers, equipment, etc.) on some days of
the project. Project planners usually level resources to meet
the physical limit of resources and to avoid the day-to-day
fluctuations in resource demands.

The fluctuation of resources is undesirable for the

contractor because it causes cost overrun and inefficient
resource management problems. Therefore, the resource
leveling aims to minimize fluctuations in the patterns of
resource usage within the required duration. The
assumption underlying this problem is that the availability
of resources is not limited and the project duration is fixed.
A histogram showing the variation in the resource profile is
generally created as a result of solving resource leveling
problems. This histogram becomes an important tool in
project management to avoid the difficulties associated
with the large variations in resource usage.

Depending on the type of constraints, resources and time,

the scheduling technique can be divided into two categories,
i.e., resource allocation and resource leveling. Often, two

techniques have been used interchangeably in the literature.
However, it is necessary to differentiate resource leveling
from resource allocation. Resource allocation aims to
minimize the project duration with resource constraints,
while resource leveling is used to minimize fluctuations in
the patterns of resource usage within the required duration.
In this paper resource leveling, rather than resource
allocation, will be used to describe the scheduling
technique to reduce the variations among the valleys and
peaks in the resource demand.

Unlimited resource leveling problems have been solved

using either mathematical models or heuristic rules. The
heuristic procedures first develop a resource histogram
based on the early start time of activities derived from
Critical Path Method (CPM) or Program Evaluation and
Review Technique (PERT) techniques, and then shift non-
critical activities according to some particular rules. The
notable point is that current heuristic techniques for
resource leveling shift a non-critical activity individually to
meet the resource requirements in a sequential mode,
starting with activities that have the least total float.
Although the heuristic methods can handle very large
projects, the solution they provide is not an optimum. There
is still a need for improvement in the area of optimality and
efficiency since these methods have proven to be
inconsistent with regard to the quality of results produced
on project networks.

Relative to the vast amount of research that has been

conducted on heuristic procedures, optimal procedures

DEVELOPMENT OF A RESOURCE LEVELING MODEL USING
OPTIMIZATION

Jin-Lee Kim ¹ and Ralph D. Ellis ²

¹ Ph.D. Candidate, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, USA
² Associate Professor, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, USA

Correspond to jin5176@ufl.edu

ABSTRACT: This paper presents a GA-based optimal algorithm for a resource leveling model that levels the resources of
a set of non-critical activities experiencing conflicts simultaneously up to an assumed level of resource rates specified by the
planner using a pair-wise comparison of the activities being considered. A parameter called the future float is adopted and
applied as an indicator for assigning leveling priorities to the sets of activities experiencing conflicts. A construction project
network example was worked out to demonstrate the performance of the proposed method. The histogram obtained using the
algorithm proposed was shown to be the same as, or very close to that produced by the existing resource leveling method
based on the least total float rule, which shifts non-critical activities individually.

Key words: Resource Leveling, Algorithms, Optimization Models, Project Management, Scheduling

559

have rarely been the focus of such extensive research. The
main disadvantage of these models is that they are not
suitable for large networks because of the combinatorial
mathematics of the leveling problem. If a project has 10
non-critical activities, each having a float of 5 days, for
instance, approximately 10 million (510) possible combina-
tions exist. Because of this, little research has been done to
solve the resource leveling problem using optimization
techniques.

This paper presents a GA-based optimal algorithm for a

resource leveling model that levels the resources of a set of
non-critical activities experiencing conflicts simultaneously
up to an assumed level of resource rates specified by the
planner using a pair-wise comparison of the activities being
considered. A parameter called the future float is adopted
and applied as an indicator for assigning leveling priorities
to the sets of activities being considered. A construction
project network example was worked out to demonstrate
the performance of the proposed method.

2. PREVIOUS STUDIES

Recently, some research has been conducted to solve the

resource leveling problem in construction engineering
using optimization techniques such as genetic algorithms
(GAs). Chan et al. [1] proposed a resource leveling method
along with the resource allocation that employed GAs.
They set a single equation with the objective of minimizing
the difference between resource availability and utilization.
In the string representation of GAs, they used the concept
of the current float to set the scheduling priority. The
current float concept [2] was introduced to eliminate
network recalculation, which is the main disadvantage of
the total float concept in the CPM analysis. The model
establishes the order of priority for the relevant activities
based on their current floats and allocates resources to the
activity that has the smallest current float under the
availability of resources.

Hegazy [3] combined resource allocation and leveling

using GAs. The research incorporated the concept of
minimum total float for resource allocation, and minimum
moment method for resource leveling, as the decision
variable. Although an effective improvement was made in
the combined model, it has been stated clearly that the
method did not yield optimum solutions. Leu and Yang [4]
proposed a GA-based multicriteria optimal model for
construction scheduling. Researchers unified time-cost
trade-off and resource allocation. They used activity
duration obtained from the time-cost trade-off model as
basic input data for the computation of minimum project
duration under resource constraints. However, they
mentioned that improvements in resource leveling needed
to be made because resource conflicts still occurred.
Senouci and Eldin [5] presented a model that performs

resource leveling and resource-constrained scheduling
simultaneously using the quadratic penalty function to
transform the resource-scheduling problem into an
unconstrained one. In the string representation of GAs,
however, they used the activity duration and start time that
causes resource conflicts.

As a result, no optimal procedures have proven to be

computationally feasible for large, complex projects that
can occur in practice. Therefore, it is necessary to seek a
systematic way to avoid resource conflicts that occur due to
the early start schedule. In doing so, it is important to
develop a more efficient algorithm that searches optimal
solutions for the resource leveling problems for large-sized
project networks in a reasonable amount of time. A
developed algorithm should consider both the availability
of resources and precedence relationships. Since this
research takes GAs as a methodology to develop an
algorithm for the resource leveling problems, a brief
description of genetic algorithms (GAs) is provided in the
next section.

3. GENETIC ALGORITHMS (GAS)

A new optimization technique, genetic algorithms (GAs),

has emerged as a tool that is beneficial for construction
applications. GAs perform a random search for the optimal
solution to a problem by simulating natural-evolution and
survival-of-the-fittest mechanisms. GAs have attracted
considerable attention in a number of fields not only as a
methodology for optimization, adaptation, and learning, but
also as optimization techniques for solving discrete
optimization problems or other hard optimization problems.
GAs differ from conventional optimization and search
procedures in the following four ways, as summarized by
Goldberg [6]:

• GAs work with a coding of the parameter (solution) set,

not the parameters, (solutions) themselves,
• GAs search from a population of solutions, not a single

solution,
• GAs use objective function (fitness function)

information, not derivatives or other auxiliary
knowledge, and

• GAs use probabilistic transformation rules, not
deterministic ones.

The main components of GAs are the population, the

string, and the feature [6]. Population is a set of possible
solutions to the problem. String is a possible solution to the
problem. It has been referred to as the “chromosome” in
some research. Feature is a part of a solution to a given
problem. It has been referred to as the “gene” in some
research. Usually, a feature is an independent variable in
the problem.

560

GAs start with an initial population of individuals
generated at random. Each individual in the population
represents a potential solution to the problem under
consideration. The individuals evolve through successive
iterations, called generations. During each generation, each
individual in the population is evaluated using some
measure of fitness. Then, the population of the next
generation is created through genetic operators. The
procedure continues until the termination condition is
satisfied.

Three main genetic operators in GAs are reproduction,

crossover, and mutation. They are used to create the next
generation [6]. Reproduction is a process in which
individual strings are generated according to their objective
function values. Strings with a higher value have a higher
probability of contributing one or more offspring in the
next generation. The easiest way to implement the
reproduction operator is to create a roulette wheel where
each current string in the population has a roulette wheel
slot sized in proportion to its fitness value. After
reproduction, crossover can proceed in two steps. First,
features of the newly reproduced strings in the mating pool
are mated at random. Second, each pair of strings
undergoes crossover. Mutation is the occasional random
alteration of the value of a string position. The mutation
operator plays a secondary role in GAs. It is notable that
the frequency of mutation to obtain good results in
empirical genetic algorithm studies is on the order of one
mutation per thousand position transfers. Mutation rates are
similarly small in natural populations, leading to the
conclusion that mutation is appropriately considered as a
secondary mechanism of genetic algorithm adaptation. The
three basic parameters of GAs are crossover probability,
mutation probability, and population size. The most
important component in the GA approach is to decide the
fitness function and evaluation function. It is necessary to
distinguish between the evaluation function and the fitness
function used by GAs. The evaluation function, also called
the objective function, provides a measure of performance
with respect to a particular set of parameters. In contrast,
the fitness function transforms that measure of performance
into an allocation of reproductive opportunities. The
evaluation of a string representing a set of parameters is
independent of the evaluation of any other string. However,
the fitness of that string is always defined with respect to
other members of the current population [7].

4. MODEL DEVELOPMENT

4.1 Model Formulation

The unlimited resource leveling is described as “a
process wherein the activities in the network are positioned
in time such that the project resources are minimized on a
day-to-day basis [8].” Depending on a critical path network,
a model assumes the activities, the network logic, and
resources for solving the unlimited resource leveling
problems. The major assumptions are the following:

• Once an activity is started, it will be completed without
interruption,

• The resource requirements of each activity are
specified and constant during the duration of the
activity,

• Duration assigned to each activity is constant during
the period of the activity,

• Precedence relationship between any activities is
maintained, and

• The project’s completion date is fixed so that it cannot
be extended or shortened.

It is notable to differentiate an optimal solution from a

near optimal solution because both terms have very specific
meanings in the operations research literature. An optimal
algorithm is one that guarantees that an optimal solution
will be found as soon as an optimal algorithm is completed.
A near optimal algorithm, however, has a slightly less
precise meaning than an optimal algorithm. Upon
completion of a near optimal algorithm, a near optimal
solution is usually produced. What is meant by a near
optimal solution is that it is a solution close to the optimum.

4.2 Genetic Algorithm Procedure for Resource Leveling

The simplified procedure of GAs that is used in this
paper is as follows: (1) Define a solution representation, (2)
Set variables, objective functions, and constraints, (3)
Generate initial population of solutions (strings), (4)
Evaluate the fitness of possible solution, (5) Apply genetic
operators, and (6) Test termination conditions.

Step 1: Defining a solution representation

A solution is represented by the set of values associated

with the problem variable. The unlimited resource leveling
problem needs to be transformed to an unconstrained
problem since the original GA does not allow for any
constraints but directly solve only unconstrained
optimization problems. This can be accomplished by
adding a penalty function to the genetic algorithm.
Whenever a violation of any of the constraints occurs, the
objective function is penalized.

A B C … … … J L … … … AB AC

a1 a2 a3 … … … aj aj+1 … … … an-1 an

Activity name

a possible starting date

Figure 1. Genetic algorithm representation of solution

Figure 1 shows a possible solution represented in a string.
A gene value inside a box stands for the delay in the
starting time of an activity. A detailed description of a gene
value is given in Step 2.

Step 2: Setting the variables, objective functions, and

constraints

Variables are the delay in the starting time of an activity

(i.e., value inside each gene), which was first used by

561

Sathyanarayana et al. [9] to obtain optimum solutions for a
resource allocation problem. A different concept of the
delay computation method is used in the present model,
which is derived from the concept of the future float. The
future float (FF), of an activity, introduced by Moselhi and
Lorterapong [10], is applied as an indicator for assigning
leveling priorities to the sets of activities being considered.
It is defined as

FFi = LSTi - NTF

NTF = CT + min (d1, d2, …, dj, dj+1, …, dk)

where, i = the activity that will be postponed to the next

time frame (NTF), j = the activity to be scheduled at CT, k
= the total number of activities to be scheduled at CT, FFi =
the future float of activity i, LSTi = the latest start time of
activity i from the original CPM analysis, and CT = current
time [2]. An activity with a lower gene value is set ahead of
others with higher gene values in the same rank.

The objective function used in this paper is to minimize

the deviation between actual resource requirements and the
desirable resource rates established by the scheduler for
each time unit during the whole project duration, which is
the typical pursuit of most algorithms in unlimited resource
leveling problems [1] [3] [4]. The objective function can be
formulated as:

where, URLI, Λ = the unlimited resource leveling index,

Rdi = the difference between available and required
resource on day i, Rai = the resource available on day i, Rrij
= the resource required on day i by the jth activity, T = the
fixed target project duration, j∈ A = set of all the activities
scheduled on day i, and P = a penalty value whose purpose
is to prevent the violation of precedence relationships. It is
notable that the project duration should not exceed the
fixed one as assumed earlier.

Step 3: Generating initial population of solutions

(strings)

Since genetic algorithms start with the generation of an

initial population of random solutions, which are strings or
chromosomes, an initial population is created at random to
apply GAs, as is done in most research [1] [3] [4] [11].
Population size indicates how many strings in a population
are in one generation. It is one of the most important factors
that affect the solution and computation time of genetic
algorithms. Essentially, a large population size will increase
the accuracy of obtaining a global optimal solution, but
require large amount of computation time. If too few
strings exist, GAs have few opportunities to perform
crossover and only a small part of the search space is
explored. In contrast, if too many strings exist, then GAs
slow down. Goldberg [6] has shown that an increase in
population size is not useful because it increases the length
of the problem solving process. The size of the initial

population is set at 30, the lowest acceptable population
size as suggested in the previously conducted studies [6]
[12].

Step 4: Evaluating the fitness of possible solutions

The fitness of each string in the population obtained in

Step 3 is evaluated by the value calculated when the fitness
of string i is divided by the sum of the total fitness of all
strings [7].

Step 5: Applying genetic operators

First, reproduction measures the fitness of strings in a

generation. Some of the strings are reproduced in
proportion to their objective function values. The aim of
reproduction is to provide good solutions with a higher
chance of passing their feature to the next generation than
bad ones. Reproduction also increases or decreases the
number of offspring for each string in the population
according to the fitness values.

Parent 1 A B C D E F Child 1 A B C E C F

Parent 2 B A D E C F Child 2 B A D D E F

Parent A B C D E F Child A B D C E F

Crossover

Mutation

Crossover Point

Figure 2. Genetic operators – Crossover and Mutation

Second, crossover selects two distinct strings from the

population at random. It exchanges some portion of the
strings with a probability equal to the crossover rate in
order to create a new offspring. One of the simplest ways is
to choose some crossover point randomly. Everything
before this point is copied from a first parent and
everything after a crossover point is copied from a second
parent (See Figure 2). Crossover probability indicates how
often crossover will be performed. If no crossover takes
place, an offspring is an exact copy of the parents.
Otherwise, an offspring is created from part of the parents’
string. If crossover probability is 0%, a whole new
generation is created from exact copies of strings from the
old population, even though the new generation is not
exactly same. If 100%, then all offspring are created by
crossover.

Finally, uniform mutation, which is one type of mutation,

takes place after a crossover is performed. Mutation is a
random change of features in a string to reintroduce lost bit
values into a population. It alters one or more features of a
selected string with a probability equal to the mutation rate.
Mutation changes the new offspring at random (See Figure
2). Mutation probability indicates how often parts of a
string will be mutated. If no mutation occurs, an offspring

562

is created after crossover without any change. If mutation is
performed, part of a string is changed. If mutation
probability is 0%, then nothing is changed. However, if
100%, then the whole string is changed. Mutation
probability is necessary to prevent a local optimum of a
solved problem, in which all solutions in the population fall
into an optimum.

Step 6: Testing termination conditions

An algorithm for the resource leveling model is

terminated when it meets conditions. The genetic algorithm
procedure is terminated if a resource histogram is close to a
rectangle within the fixed project duration. Because the
nearer the value of the unlimited resource leveling index
(URLI) is to zero, the more closely the resource histogram
resembles a rectangle.

4.3 Case Example

This research team chose a 29-activity network that was
extracted from Willis and Hastings [13] to illustrate a
problem solved by the genetic algorithms procedure
proposed in this paper. Activities of a project example with
its duration and resources required for each activity is
tabulated in Table 1.

Table 1. Detail information of activities (After [13])

Without the constraint of resources a time analysis using

the CPM technique is required to solve the unlimited
resource leveling problem. Figure 3 shows the precedence
diagram for a project example drawn using the detail
information of the activities tabulated in Table 1.

0 5

0 5 5

0

10

1 8

1 8 9

0

110

6 16

18 4 22

12

40

6 26

31 1 32

25

140

13 17

26 4 30

13

170

0 27

25 2 27

25

210

2 12

11 3 14

9

30

2 16

14 4 18

12

240

0 13

9 4 13

9

120

0 25

13 12 25

13

130

0 9

5 4 9

5

20

6 19

19 6 25

13

200

8 17

24 1 25

16

280

13 18

30 1 31

17

180

2 25

18 9 27

16

260

8 25

24 9 33

16

250

6 19

22 3 25

16

50

0 33

27 6 33

27

270

1 31

28 4 32

27

220

10 22

29 3 32

19

70

12 20

31 1 32

19

60

13 19

31 1 32

18

190

4 29

29 4 33

25

290

6 25

25 6 31

19

90

1 32

32 1 33

31

230

6 27

33 0 33

27

160

10 23

32 1 33

22

80

6 27

32 1 33

26

150

6 27

31 2 33

25

100

TF EF

LS Dur. LF

ES

Activity No.

Legend

Figure 3. Precedence diagram for a project instance

Figure 3 also shows all schedule data and a legend is

placed inside Figure 3. In detail, the bold line indicates the
critical path of the project. Durations, the early start time
(EST), the early finish time (EFT), the late start time (LST),
the late finish time (LFT), and the total float (TF) values
calculated by forward and backward calculations were
shown. The critical path time is 33 weeks, which is the
project duration fixed for solving the resource leveling
problem. For the sake of simplicity, the network is assumed
to have only one type of resource and each activity can
consume only one type of resource, i.e., labor. Let us
assume that a limited amount of labor available for the
completion of a project instance is set to 10 laborers for the
case example only. A resource histogram based on the CPM
early start is drawn in Figure 4.

16

14

12

10

8

6

4

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

WEEKS

W
EE

K
LY

 R
ES

O
U

R
C

E
D

EM
A

N
D

CPM EARLY START

Figure 4. Resource histogram produced by CPM early start

4.4 Comparison with heuristic methods

A project example was used to verify the mechanism of
the GA-based resource leveling model. The resource
histograms for leveling using both the least total float rule
and the GA-based model are depicted in Figure 5. The
amount of resource available for each activity up to day 16
does not exceed the required amount of resources in this
specific example project. On day 17, the resource conflict
occurs between activities 250 and 260. Activity 250 that
has the negative future float value of 8 is first shifted
because its future float is less than that of activity 260,
which has the negative value of 2. In the next time frame,
day 26, a resource conflict occurs again among activities
100, 140, and 290. Three activities have the positive future

563

float value of 4, 4, and, 2, respectively and activity 290,
which has the least future float value, is then shifted.

16

14

12

10

8

6

4

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

WEEKS

W
EE

K
LY

 R
ES

O
U

R
C

E
D

EM
A

N
D

AFTER LEVELING USING GA MODEL

AFTER LEVELING USING LEAST TF

Figure 5. Comparison of resource profiles produced by

heuristic rule and GA

As shown in Figure 5, two resource histograms have
shown similar numbers of violations resulting in resource
overutilization because of the fixed duration, meaning that
the project duration cannot exceed the fixed duration of 33
weeks. It is observed that the histogram obtained using the
algorithm proposed was shown to be the same as, or very
close to that produced by the existing resource leveling
based on the least total float rule, which shifts non-critical
activities individually. The notable thing about the GA-
based resource leveling model is that it can provide several
equally good scheduling alternatives, even though they are
not included in Figure 5.

5. CONCLUSIONS AND RECOMMENDATIONS

This paper presents a GA-based optimal algorithm for a

resource leveling model that simultaneously levels the
resources of a set of non-critical activities experiencing
conflicts simultaneously up to an assumed level of resource
rates specified by the planner using a pair-wise comparison
of the activities being considered. A parameter called the
future float value is adopted and applied as an indicator for
assigning leveling priorities to the sets of activities
experiencing conflicts. A construction project network
example was worked out to show the performance of the
proposed model. The histogram obtained using the
algorithm proposed was shown to be the same as, or very
close to that produced by the existing resource leveling
method based on the least total float rule, which shifts non-
critical activities individually.

Future work is recommended to consider the effect of the

resource leveling method on the duration of the project. It
is possible to expand the project duration in a situation
where a contractor for the project does not care to lengthen
the project duration but needs to balance resources up to an
optimal level of resource rates, even though this situation is
not considered in this paper. In this case, any activity being
postponed might reduce the remaining total float to the
project network.

REFERENCES
[1] Chan, W., Chua, D. K. H., and Kannan, G. (1996).
“Construction Resource Scheduling with Genetic
Algorithms.” J. Constr. Engrg. and Mgmt., ASCE, Vol. 122,
No. 2, pp. 125-132.
[2] Shanmuganayagam, V. (1989). “Current Float
Techniques for Resource Scheduling.” J. Constr. Engrg.
and Mgmt., ASCE, Vol. 115, No. 3, pp. 401-411.
[3] Hegazy, T. (1999). “Optimization of Resource
Allocation and Leveling Using Genetic Algorithms.” J.
Constr. Engrg. and Mgmt., ASCE, Vol. 125, No. 3, pp. 167-
175.
[4] Leu, S., and Yang, C. (1999). “GA-Based Multicriteria
Optimal Model for Construction Scheduling.” J. Constr.
Engrg. and Mgmt., ASCE, Vol.125, No. 6, pp. 420-427.
[5] Senouci, A. B., and Eldin, N. N. (2004). “Use of
Genetic Algorithms in Resource Scheduling of
Construction Projects,” J. Constr. Engrg. and Mgmt., ASCE,
Vol. 130, No. 6, pp. 869-877.
[6] Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading, Mass.
[7] Whitley, D. (1993). A Genetic Algorithms Tutorial.
Retrieved on April 18, 2004 from
http://samizdat.mines.edu/ga_tutorial/.
[8] Harris, R. B. (1978). Precedence and Arrow Networking
Techniques for Construction, John Wiley & Sons, Inc.,
New York, N.Y.
[9] Sathyanarayana, K., Rajeev, S., Kalyanaraman, V.
(1993). “Optimum resource allocation in construction
projects using genetic algorithms,” Proc. of 3rd Int. Conf.
on the Application of AI to Civ. and Struct. Engrg.,
Edinburgh, England.
[10] Moselhi, A., and Lorterapong, P. (1993). “Least Impact
Algorithm for Resource Allocation.” Can. J.Civ. Eng.,
CSCE, Vol. 20, No. 2, pp. 180-188.
[11] Bean, J. C. (1994). “Genetic Algorithms and Random
Keys for Sequencing and Optimization,” J. on Computing,
Operations Research Society of America, Vol. 6, No. 2, pp.
154-160.
[12] Li, H., Cao, J., and Love, P. E. D. (1999). “Using
Machine Learning and GA to Solve Time-Cost Trade-Off
Problems.” J. Constr. Engrg. and Mgmt., ASCE, Vol. 125,
No. 5, pp. 347-353.
[13] Willis, R. J., and Hastings, N. A. J. (1976). “Project
Scheduling with Resource Constraints Using Branch and
Bound Methods,” Operations Research, 27 (2), pp. 341-
349.

