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1. INTRODUCTION 

 
Resource leveling in construction engineering is an 

effective scheduling strategy only when the project duration 
is fixed without regard to limitations in the availability of 
resources. Resource leveling problems need to be solved 
accurately to reduce the maximum demands for a given 
resource on any given day. A schedule that was generated 
using the early start time of an activity generally tends to 
create conflicts by demanding large numbers of resources 
(for example, workers, equipment, etc.) on some days of 
the project. Project planners usually level resources to meet 
the physical limit of resources and to avoid the day-to-day 
fluctuations in resource demands. 

 
The fluctuation of resources is undesirable for the 

contractor because it causes cost overrun and inefficient 
resource management problems. Therefore, the resource 
leveling aims to minimize fluctuations in the patterns of 
resource usage within the required duration. The 
assumption underlying this problem is that the availability 
of resources is not limited and the project duration is fixed. 
A histogram showing the variation in the resource profile is 
generally created as a result of solving resource leveling 
problems. This histogram becomes an important tool in 
project management to avoid the difficulties associated 
with the large variations in resource usage. 

 
Depending on the type of constraints, resources and time, 

the scheduling technique can be divided into two categories, 
i.e., resource allocation and resource leveling. Often, two 

techniques have been used interchangeably in the literature. 
However, it is necessary to differentiate resource leveling 
from resource allocation. Resource allocation aims to 
minimize the project duration with resource constraints, 
while resource leveling is used to minimize fluctuations in 
the patterns of resource usage within the required duration. 
In this paper resource leveling, rather than resource 
allocation, will be used to describe the scheduling 
technique to reduce the variations among the valleys and 
peaks in the resource demand. 

 
Unlimited resource leveling problems have been solved 

using either mathematical models or heuristic rules. The 
heuristic procedures first develop a resource histogram 
based on the early start time of activities derived from 
Critical Path Method (CPM) or Program Evaluation and 
Review Technique (PERT) techniques, and then shift non-
critical activities according to some particular rules. The 
notable point is that current heuristic techniques for 
resource leveling shift a non-critical activity individually to 
meet the resource requirements in a sequential mode, 
starting with activities that have the least total float. 
Although the heuristic methods can handle very large 
projects, the solution they provide is not an optimum. There 
is still a need for improvement in the area of optimality and 
efficiency since these methods have proven to be 
inconsistent with regard to the quality of results produced 
on project networks. 

 
Relative to the vast amount of research that has been 

conducted on heuristic procedures, optimal procedures 
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have rarely been the focus of such extensive research. The 
main disadvantage of these models is that they are not 
suitable for large networks because of the combinatorial 
mathematics of the leveling problem. If a project has 10 
non-critical activities, each having a float of 5 days, for 
instance, approximately 10 million (510) possible combina-
tions exist. Because of this, little research has been done to 
solve the resource leveling problem using optimization 
techniques. 

 
This paper presents a GA-based optimal algorithm for a 

resource leveling model that levels the resources of a set of 
non-critical activities experiencing conflicts simultaneously 
up to an assumed level of resource rates specified by the 
planner using a pair-wise comparison of the activities being 
considered. A parameter called the future float is adopted 
and applied as an indicator for assigning leveling priorities 
to the sets of activities being considered. A construction 
project network example was worked out to demonstrate 
the performance of the proposed method. 
 
2. PREVIOUS STUDIES  

 
Recently, some research has been conducted to solve the 

resource leveling problem in construction engineering 
using optimization techniques such as genetic algorithms 
(GAs). Chan et al. [1] proposed a resource leveling method 
along with the resource allocation that employed GAs. 
They set a single equation with the objective of minimizing 
the difference between resource availability and utilization. 
In the string representation of GAs, they used the concept 
of the current float to set the scheduling priority. The 
current float concept [2] was introduced to eliminate 
network recalculation, which is the main disadvantage of 
the total float concept in the CPM analysis. The model 
establishes the order of priority for the relevant activities 
based on their current floats and allocates resources to the 
activity that has the smallest current float under the 
availability of resources. 

 
Hegazy [3] combined resource allocation and leveling 

using GAs. The research incorporated the concept of 
minimum total float for resource allocation, and minimum 
moment method for resource leveling, as the decision 
variable. Although an effective improvement was made in 
the combined model, it has been stated clearly that the 
method did not yield optimum solutions. Leu and Yang [4] 
proposed a GA-based multicriteria optimal model for 
construction scheduling. Researchers unified time-cost 
trade-off and resource allocation. They used activity 
duration obtained from the time-cost trade-off model as 
basic input data for the computation of minimum project 
duration under resource constraints. However, they 
mentioned that improvements in resource leveling needed 
to be made because resource conflicts still occurred. 
Senouci and Eldin [5] presented a model that performs 

resource leveling and resource-constrained scheduling 
simultaneously using the quadratic penalty function to 
transform the resource-scheduling problem into an 
unconstrained one. In the string representation of GAs, 
however, they used the activity duration and start time that 
causes resource conflicts. 

 
As a result, no optimal procedures have proven to be 

computationally feasible for large, complex projects that 
can occur in practice. Therefore, it is necessary to seek a 
systematic way to avoid resource conflicts that occur due to 
the early start schedule. In doing so, it is important to 
develop a more efficient algorithm that searches optimal 
solutions for the resource leveling problems for large-sized 
project networks in a reasonable amount of time. A 
developed algorithm should consider both the availability 
of resources and precedence relationships. Since this 
research takes GAs as a methodology to develop an 
algorithm for the resource leveling problems, a brief 
description of genetic algorithms (GAs) is provided in the 
next section. 
 
3. GENETIC ALGORITHMS (GAS)  

 
A new optimization technique, genetic algorithms (GAs), 

has emerged as a tool that is beneficial for construction 
applications. GAs perform a random search for the optimal 
solution to a problem by simulating natural-evolution and 
survival-of-the-fittest mechanisms. GAs have attracted 
considerable attention in a number of fields not only as a 
methodology for optimization, adaptation, and learning, but 
also as optimization techniques for solving discrete 
optimization problems or other hard optimization problems. 
GAs differ from conventional optimization and search 
procedures in the following four ways, as summarized by 
Goldberg [6]: 

 
• GAs work with a coding of the parameter (solution) set, 

not the parameters, (solutions) themselves, 
• GAs search from a population of solutions, not a single 

solution, 
• GAs use objective function (fitness function) 

information, not derivatives or other auxiliary 
knowledge, and 

• GAs use probabilistic transformation rules, not 
deterministic ones. 

 
The main components of GAs are the population, the 

string, and the feature [6]. Population is a set of possible 
solutions to the problem. String is a possible solution to the 
problem. It has been referred to as the “chromosome” in 
some research. Feature is a part of a solution to a given 
problem. It has been referred to as the “gene” in some 
research. Usually, a feature is an independent variable in 
the problem. 
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GAs start with an initial population of individuals 
generated at random. Each individual in the population 
represents a potential solution to the problem under 
consideration. The individuals evolve through successive 
iterations, called generations. During each generation, each 
individual in the population is evaluated using some 
measure of fitness. Then, the population of the next 
generation is created through genetic operators. The 
procedure continues until the termination condition is 
satisfied. 

 
Three main genetic operators in GAs are reproduction, 

crossover, and mutation. They are used to create the next 
generation [6]. Reproduction is a process in which 
individual strings are generated according to their objective 
function values. Strings with a higher value have a higher 
probability of contributing one or more offspring in the 
next generation. The easiest way to implement the 
reproduction operator is to create a roulette wheel where 
each current string in the population has a roulette wheel 
slot sized in proportion to its fitness value. After 
reproduction, crossover can proceed in two steps. First, 
features of the newly reproduced strings in the mating pool 
are mated at random. Second, each pair of strings 
undergoes crossover. Mutation is the occasional random 
alteration of the value of a string position. The mutation 
operator plays a secondary role in GAs. It is notable that 
the frequency of mutation to obtain good results in 
empirical genetic algorithm studies is on the order of one 
mutation per thousand position transfers. Mutation rates are 
similarly small in natural populations, leading to the 
conclusion that mutation is appropriately considered as a 
secondary mechanism of genetic algorithm adaptation. The 
three basic parameters of GAs are crossover probability, 
mutation probability, and population size. The most 
important component in the GA approach is to decide the 
fitness function and evaluation function. It is necessary to 
distinguish between the evaluation function and the fitness 
function used by GAs. The evaluation function, also called 
the objective function, provides a measure of performance 
with respect to a particular set of parameters. In contrast, 
the fitness function transforms that measure of performance 
into an allocation of reproductive opportunities. The 
evaluation of a string representing a set of parameters is 
independent of the evaluation of any other string. However, 
the fitness of that string is always defined with respect to 
other members of the current population [7]. 
 
4. MODEL DEVELOPMENT  
 
4.1 Model Formulation 

The unlimited resource leveling is described as “a 
process wherein the activities in the network are positioned 
in time such that the project resources are minimized on a 
day-to-day basis [8].” Depending on a critical path network, 
a model assumes the activities, the network logic, and 
resources for solving the unlimited resource leveling 
problems. The major assumptions are the following: 

• Once an activity is started, it will be completed without 
interruption, 

• The resource requirements of each activity are 
specified and constant during the duration of the 
activity, 

• Duration assigned to each activity is constant during 
the period of the activity, 

• Precedence relationship between any activities is 
maintained, and 

• The project’s completion date is fixed so that it cannot 
be extended or shortened. 

 
It is notable to differentiate an optimal solution from a 

near optimal solution because both terms have very specific 
meanings in the operations research literature. An optimal 
algorithm is one that guarantees that an optimal solution 
will be found as soon as an optimal algorithm is completed. 
A near optimal algorithm, however, has a slightly less 
precise meaning than an optimal algorithm. Upon 
completion of a near optimal algorithm, a near optimal 
solution is usually produced. What is meant by a near 
optimal solution is that it is a solution close to the optimum. 
 
4.2 Genetic Algorithm Procedure for Resource Leveling  

The simplified procedure of GAs that is used in this 
paper is as follows: (1) Define a solution representation, (2) 
Set variables, objective functions, and constraints, (3) 
Generate initial population of solutions (strings), (4) 
Evaluate the fitness of possible solution, (5) Apply genetic 
operators, and (6) Test termination conditions. 

 
Step 1: Defining a solution representation 
 
A solution is represented by the set of values associated 

with the problem variable. The unlimited resource leveling 
problem needs to be transformed to an unconstrained 
problem since the original GA does not allow for any 
constraints but directly solve only unconstrained 
optimization problems. This can be accomplished by 
adding a penalty function to the genetic algorithm. 
Whenever a violation of any of the constraints occurs, the 
objective function is penalized. 

A B C … … … J L … … … AB AC

a1 a2 a3 … … … aj aj+1 … … … an-1 an

Activity name

a possible starting date

Figure 1. Genetic algorithm representation of solution 
 

Figure 1 shows a possible solution represented in a string. 
A gene value inside a box stands for the delay in the 
starting time of an activity. A detailed description of a gene 
value is given in Step 2. 

 
Step 2: Setting the variables, objective functions, and 

constraints 
 
Variables are the delay in the starting time of an activity 

(i.e., value inside each gene), which was first used by 
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Sathyanarayana et al. [9] to obtain optimum solutions for a 
resource allocation problem. A different concept of the 
delay computation method is used in the present model, 
which is derived from the concept of the future float. The 
future float (FF), of an activity, introduced by Moselhi and 
Lorterapong [10], is applied as an indicator for assigning 
leveling priorities to the sets of activities being considered. 
It is defined as 

 
FFi = LSTi - NTF 

NTF = CT + min (d1, d2, …, dj, dj+1, …, dk) 
 
where, i = the activity that will be postponed to the next 

time frame (NTF), j = the activity to be scheduled at CT, k 
= the total number of activities to be scheduled at CT, FFi = 
the future float of activity i, LSTi = the latest start time of 
activity i from the original CPM analysis, and CT = current 
time [2]. An activity with a lower gene value is set ahead of 
others with higher gene values in the same rank. 

 
The objective function used in this paper is to minimize 

the deviation between actual resource requirements and the 
desirable resource rates established by the scheduler for 
each time unit during the whole project duration, which is 
the typical pursuit of most algorithms in unlimited resource 
leveling problems [1] [3] [4]. The objective function can be 
formulated as:  

 
where, URLI, Λ = the unlimited resource leveling index, 

Rdi = the difference between available and required 
resource on day i, Rai = the resource available on day i, Rrij 
= the resource required on day i by the jth activity, T = the 
fixed target project duration, j∈ A = set of all the activities 
scheduled on day i, and P = a penalty value whose purpose 
is to prevent the violation of precedence relationships. It is 
notable that the project duration should not exceed the 
fixed one as assumed earlier. 

 
Step 3: Generating initial population of solutions 

(strings) 
 
Since genetic algorithms start with the generation of an 

initial population of random solutions, which are strings or 
chromosomes, an initial population is created at random to 
apply GAs, as is done in most research [1] [3] [4] [11]. 
Population size indicates how many strings in a population 
are in one generation. It is one of the most important factors 
that affect the solution and computation time of genetic 
algorithms. Essentially, a large population size will increase 
the accuracy of obtaining a global optimal solution, but 
require large amount of computation time. If too few 
strings exist, GAs have few opportunities to perform 
crossover and only a small part of the search space is 
explored. In contrast, if too many strings exist, then GAs 
slow down. Goldberg [6] has shown that an increase in 
population size is not useful because it increases the length 
of the problem solving process. The size of the initial 

population is set at 30, the lowest acceptable population 
size as suggested in the previously conducted studies [6] 
[12]. 

 
Step 4: Evaluating the fitness of possible solutions 
 
The fitness of each string in the population obtained in 

Step 3 is evaluated by the value calculated when the fitness 
of string i is divided by the sum of the total fitness of all 
strings [7].  

 
Step 5: Applying genetic operators 
 
First, reproduction measures the fitness of strings in a 

generation. Some of the strings are reproduced in 
proportion to their objective function values. The aim of 
reproduction is to provide good solutions with a higher 
chance of passing their feature to the next generation than 
bad ones. Reproduction also increases or decreases the 
number of offspring for each string in the population 
according to the fitness values.  

Parent 1 A B C D E F Child 1 A B C E C F

Parent 2 B A D E C F Child 2 B A D D E F

Parent A B C D E F Child A B D C E F

Crossover

Mutation

Crossover Point

 
Figure 2. Genetic operators – Crossover and Mutation 

 
Second, crossover selects two distinct strings from the 

population at random. It exchanges some portion of the 
strings with a probability equal to the crossover rate in 
order to create a new offspring. One of the simplest ways is 
to choose some crossover point randomly. Everything 
before this point is copied from a first parent and 
everything after a crossover point is copied from a second 
parent (See Figure 2). Crossover probability indicates how 
often crossover will be performed. If no crossover takes 
place, an offspring is an exact copy of the parents. 
Otherwise, an offspring is created from part of the parents’ 
string. If crossover probability is 0%, a whole new 
generation is created from exact copies of strings from the 
old population, even though the new generation is not 
exactly same. If 100%, then all offspring are created by 
crossover. 

 
Finally, uniform mutation, which is one type of mutation, 

takes place after a crossover is performed. Mutation is a 
random change of features in a string to reintroduce lost bit 
values into a population. It alters one or more features of a 
selected string with a probability equal to the mutation rate. 
Mutation changes the new offspring at random (See Figure 
2). Mutation probability indicates how often parts of a 
string will be mutated. If no mutation occurs, an offspring 
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is created after crossover without any change. If mutation is 
performed, part of a string is changed. If mutation 
probability is 0%, then nothing is changed. However, if 
100%, then the whole string is changed. Mutation 
probability is necessary to prevent a local optimum of a 
solved problem, in which all solutions in the population fall 
into an optimum.  

 
Step 6: Testing termination conditions 
 
An algorithm for the resource leveling model is 

terminated when it meets conditions. The genetic algorithm 
procedure is terminated if a resource histogram is close to a 
rectangle within the fixed project duration. Because the 
nearer the value of the unlimited resource leveling index 
(URLI) is to zero, the more closely the resource histogram 
resembles a rectangle. 
 
4.3 Case Example  

This research team chose a 29-activity network that was 
extracted from Willis and Hastings [13] to illustrate a 
problem solved by the genetic algorithms procedure 
proposed in this paper. Activities of a project example with 
its duration and resources required for each activity is 
tabulated in Table 1. 
 

Table 1. Detail information of activities (After [13]) 

 
 
Without the constraint of resources a time analysis using 

the CPM technique is required to solve the unlimited 
resource leveling problem. Figure 3 shows the precedence 
diagram for a project example drawn using the detail 
information of the activities tabulated in Table 1. 
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Figure 3. Precedence diagram for a project instance 

 
Figure 3 also shows all schedule data and a legend is 

placed inside Figure 3. In detail, the bold line indicates the 
critical path of the project. Durations, the early start time 
(EST), the early finish time (EFT), the late start time (LST), 
the late finish time (LFT), and the total float (TF) values 
calculated by forward and backward calculations were 
shown. The critical path time is 33 weeks, which is the 
project duration fixed for solving the resource leveling 
problem. For the sake of simplicity, the network is assumed 
to have only one type of resource and each activity can 
consume only one type of resource, i.e., labor. Let us 
assume that a limited amount of labor available for the 
completion of a project instance is set to 10 laborers for the 
case example only. A resource histogram based on the CPM 
early start is drawn in Figure 4. 
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Figure 4. Resource histogram produced by CPM early start 

 
4.4 Comparison with heuristic methods  

A project example was used to verify the mechanism of 
the GA-based resource leveling model. The resource 
histograms for leveling using both the least total float rule 
and the GA-based model are depicted in Figure 5. The 
amount of resource available for each activity up to day 16 
does not exceed the required amount of resources in this 
specific example project. On day 17, the resource conflict 
occurs between activities 250 and 260. Activity 250 that 
has the negative future float value of 8 is first shifted 
because its future float is less than that of activity 260, 
which has the negative value of 2. In the next time frame, 
day 26, a resource conflict occurs again among activities 
100, 140, and 290. Three activities have the positive future 
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float value of 4, 4, and, 2, respectively and activity 290, 
which has the least future float value, is then shifted. 
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Figure 5. Comparison of resource profiles produced by 

heuristic rule and GA 
 

As shown in Figure 5, two resource histograms have 
shown similar numbers of violations resulting in resource 
overutilization because of the fixed duration, meaning that 
the project duration cannot exceed the fixed duration of 33 
weeks. It is observed that the histogram obtained using the 
algorithm proposed was shown to be the same as, or very 
close to that produced by the existing resource leveling 
based on the least total float rule, which shifts non-critical 
activities individually. The notable thing about the GA-
based resource leveling model is that it can provide several 
equally good scheduling alternatives, even though they are 
not included in Figure 5. 
 
5. CONCLUSIONS AND RECOMMENDATIONS 

 
This paper presents a GA-based optimal algorithm for a 

resource leveling model that simultaneously levels the 
resources of a set of non-critical activities experiencing 
conflicts simultaneously up to an assumed level of resource 
rates specified by the planner using a pair-wise comparison 
of the activities being considered. A parameter called the 
future float value is adopted and applied as an indicator for 
assigning leveling priorities to the sets of activities 
experiencing conflicts. A construction project network 
example was worked out to show the performance of the 
proposed model. The histogram obtained using the 
algorithm proposed was shown to be the same as, or very 
close to that produced by the existing resource leveling 
method based on the least total float rule, which shifts non-
critical activities individually. 

 
Future work is recommended to consider the effect of the 

resource leveling method on the duration of the project. It 
is possible to expand the project duration in a situation 
where a contractor for the project does not care to lengthen 
the project duration but needs to balance resources up to an 
optimal level of resource rates, even though this situation is 
not considered in this paper. In this case, any activity being 
postponed might reduce the remaining total float to the 
project network. 
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