A Design and Implementation of the Source Code Plagiarism
Detection System

Byung-Ryul Ahn *, Bae-young Choi **, Moon-Hyun Kim **
* anbr0305@skku.edu
** bychoi@imtl.skku.ac.kr
** mhkim@ece.skku.ac kr

Abstract. As the software industry develops at a rate speed, anyone can copy or plagiarize without difficulty contents
that are becoming digitalized. To make it worse, the development of various contents that be illegally copied and
plagiarized are resulting in the increasing infringement on and the plagiarism of the intellectual property. This
dissertation tries to put forth the method and the theory to effectively detect any plagiarism of the source code of
programs realized in various languages. This dissertation analyzes the advantage and disadvantage of the plagiarism
test software, and especially, presents a method to detect possible plagiarism by using the Pattern Matching to
overcome its disadvantage. And it also intends to introduce more developed automatic detection system by
overcoming the problems with the method of Pattern Matching.

Keywords: Multimedia Contents Protection, software piracy, Plagiarism Detection System, Pattern Matching

1 Introduction

With the computer technology and the information
getting more and more important, the infringement upon
the intellectual property and the plagiarism is increasing.
Though the plagiarism and illegal copying are in rage,
there has not been much research both in Korea and
abroad to come to grips with that problem. It takes a lot
of human labor, time and resources to judge and assess
the plagiarism. Therefore, a more efficient methodology
and objective and systematic approaches are called for.
A lot of research and development are expected to be
carried out in that kind of field in the future and it will
be easier to detect any case of plagiarism and illegal
copying and to keep the damage at the minimum while
bring resolution to the conflicts over the intellectual
property[1-4].

Documents and programs are the targets most
vulnerable to the plagiarism. The plagiarism of
documents constitutes when the source of professional
books, magazines, internet medium or documents of any
specific organization is not made clear. Plagiarism is not
confined to documents but includes cases when the
source code of programs realized in various languages is
copied from the material posted on the internet or any
organization for use without any change.

Works to detect the plagiarism should be implemented
in a quick and systematic way. And the result from it
should be objective and accurate. But it takes a
tremendous amount of time for human to detect the
illegal copying of software that are developing day in
and day out, and the there might be a lack of objectivity
considering that much subjective view of the person
who detects such illegal copying is likely to be reflected.
Therefore, many plagiarism-detecting programs have
been developed to detect those illegal copying. However,

319

most of current software does not bring out effective
result as the plagiarism gets more complicated, precise
and diverse.

This dissertation analyzes the program copying software
and makes remark on both the advantage &nd
disadvantage of it. Moreover it will introduce the pattern
patching method to detect the plagiarism of software,
and also put forth a system to detect the plagiarism of
software with more precise and varied structures
applying the method of current pattern matching, as well
as its design.

2 Detection of plagiarism using the
pattern language

The purpose of pattern language is to break the sou-ce
of current program into patterns to match with a
systematic and abstract language for the purpose of
detecting the plagiarism of programs. Moreover, it has
the advantage of overcoming the current plagiarism
detecting software by using the pattern.

2.1 Current
Language

research using Pattern

Table 1 points to the plagiarism detecting system that
applies the most representative pattern language.

Table 1. Method that uses Pattern Language

Current researc
using PatternOverview
ILanguage

Searching for the pattern of program
llanguage expressed automatically in the
source code, and making the system’

Scuple: Al

Reengineer's

ool for Sourceprototype to a simple, brief and general If the pattern symbol is divided into a big bundle as is
Code Search[5] [pattern language concept by using pattern shown in the table 2, it is easy for changing the name of
symbol) simple variable, but ineffective for the change in the
It goes through the process of using the location of the variable, data type and substitution. And
{):;ter: Se};mb‘)l and re-create as a structured it is difficult to reflect the structure of program by
Tt iumf)ares the matched source statically giving the keyword the weighted value by s?xtracting .the
Fast Partialtnd presents way to segment the static kquo@ sec.pllence. We suggest the solutlop by using
Evaluation o ffuncﬁon efficiently. Similarity duectory' comparison §tage, Static Analysis
. It carries out the matching for the stage and Speculative Analysis in order to overcome
?atterp Matchin haracter of text to define the pattern fory such problems.
in Strings[6] e matching character, forming a language
with structure).
Organizing the .
tabgle gsimilarlt carries out the test based on the structure 3 DeSIgn of system to detect the
It compares the keyword among various e e
ireny%lgr ds for :ﬁ:programs that are compargd.. . . software plaglarlsm
[The calculation of similarity applies
purpose Oldifferent weighted value among program Fig 1 shows the function of the system in each stage to
f;:tg[;agim keywords. detect the software plagiarism that this dissertation
It defines the pattern under 7 cases to presents.
measure the rate of occurrence. —
1) REMOVE if <cond> then true ¢lse false Gt | COPLA
2) REMOVE COMPARSION WITH Delphi
IAutomatic IBOOLEAN uagd
lanalysis of3) INTRODUCE PARTIAL ity drectorl—s| _Fevon
ffunctional IAPPLICATION Comparision File Lst
program style {#) REMOVE UNUSED VARIABLE IN T Report
[10] IPATTERN Stetic Analysis
5) CONVERT if <var> TO PATTERN
6) CONVERT if <var>=<const> TO|
IPATTERN COL%ZIM
[7) CONVERT hd/t]1 USE TO PATTERN Scan

What characterizes this pattern language is the ‘use of
pattern symbol for the conversion into a structured
language. In addition to that, there is a method to give |
the unit of pattern specific meaning according to each
level of declaration, type, variable, function, expression,
statement. There is also a method to compare and
analyze the key word that has the weighted value on the
bases of the structure, and a method to measure the rate
regarding the occurrence of the 7 patterns.

Particularly, the method used by SCRUPLE : A
Reengineers Tool for Source Code Search[5] is as in the
below ;

GUI(Forte for Java)

Fig. 1. Design of system to detect the software plagiarism

It goes through the processing of parsing by the Token
through the language source (program) and the parsed
token information is used to detect the variable copying
which is the static analysis, and the function copying
which is the speculative analysis.

Table 2. SCRUPLE : Pattern Symbol

Syntactic Entity Pattern Symbol 3.1 The stage of Similarity directory
1 declaration $d comparison
2 ftype 5t
3 variable v Identifying the similarity between the original copy and
4 ffunction £ illegal copy is very difficult to maintain the objectivity
5 expression m because even the assessment of illegal copy is b.ased on
6 statement @ the professional knowledge and personal experience in
detecting the plagiarism of current source code.
Table 3. Example of pattern matching Especially, the similarity between the original copy and
illegal copy is very helpful for the assessment, which
A match Pattern goes through the following 5 stages for the comparison
while($v_1<25){ do{ of similar directory.
-y _ . squares{x] =
$v 3[8v_11=8f 5(3v_1); N 0
$v_1++; quareof(x);
- X++;
}) while(x<25)

320

$t b Boolean type
Bt S String type
. Lo $t C Char type
Table 4. Comparison of similar directory by the stage 5t i%v 1=a>
. . t_typev_ sequence off ="'~ ™ .
Lstage Comparison [Variable Heclaration First declaring variable of]
Directory name, Sub-Directory name integer type variable
1 stage . . indication about the
comparison $v_{Variable}#def 4 . .
- : — - eclaration of variable
2 stage [File name,.Flle cou'nt, File size comparison Variable v (Varisbiopused indication of declaration fon
3 stage Header. information, Super class name| lexpression[”'— the use of variable
comparison indicati . i
4 stage MetlI:od name, Method count comparison $v_{Variable} #redef :}d;:?it:t))rlle of re-declaration
5 stage Method structure comparison $f 1=> Follows the
$f {sequence} sequence of declaring the
The stage 1 is often used when the original copy and the — function _
illegal copy has exactly identical directory name. The [function :Edlcatmg the sequence of declaring the function ony
stage 2 is used when the original copy and the illegal © ProgTam — ,,
h Iy diff & Th 33 $f {name} I5f 1="*{name}*
copy has only difterent 1re<.:t(?ry name. The stage 3 1s Sf 1="*{main)*"-> can be seen as the main of
used when the package of original copy was reduced or function’s name
added as well as the directory name of illegal copy. The Make entry of function’s
stage 4 is used when unnecessary header (import) was {1} {.....}#name name at the start and end of
added and the class name was altered to copy the ffanction
original one. Finally, the stage 5 is used when the defines the form of output or
method name and method count was altered as well as [] " " expression
for the stage 4. ?X)System‘out.println("aaa")
Dividing the stage 5 as in the below, an index becomes indicat'ng the start and end
. . . . * % * . Aok 1 al
available to detect the possible illegal copying by {**} {*for/while|/do while*} of controlling text

comparing the directories in each stage. And then the
irrelevant directories are removed and only similar
directories are extracted, considerable reducing the
overhead that is compared for the assessment.

3.2 Static Analysis stage

Static analysis stage is a stage that converts the program
source code to a pattern language to detect the
plagiarism. This stage applies scruple and various
current methods mentioned in the previous chapter 3,
and defines new pattern symbol that tries to make up for
the problems.

Variable Pattern Base Symbol

Table 5. Pattern Label 1 step: making LINE BY LINE Pattern
& changing the name of simple variable

Table 6. Pattern Label 2 step: variable Type alteration

\Variable [T'ype eans
[Figure - :
type St fig$v_1#[definelused][re-] ililtn:i type variable
variable _1g
Character

Character typel
?;I:able t_chrv_1#[definelused][re-] variable -8t chr

Table 7. Pattern Label 3 step: changing the location of
variable

ariable Means

Type

[Expressing sub for the

[Location of variable $v 1 1 ariable with same function

Table 8. Sub set: Variable that is used for the function like
Pattern Label 3 step

[Variabl

Sub Set for the variable eans

n Indicating when classthe name of class can be
declaration is made indicated
ex)$*d{class name}

[Entity attern Symbol Means e
indicating the class name . [Explains the sub variable
declaratio $*d="{name}" declaration |Variabl $v_1_I(sequence for theby referring to the variable

lindicates only the class name
that is imported
ex)$*d_"{IO}"#import=>
lname that is imported

declaratio
n $*d_="{name}"#import

data type of variable
$t_d=>double type
$t_i=>int type
$t_by=>byte type
$t_f=>float type
$t_l=>long type

Type $t_{variable type}

$t_sh=>short type

¢ group |variable) with the same function

Table 9. Variable Table (Sub set)

(Variable expression Means
[Declaration of]

definition [detre- variable(re-declaration)

fusedffre- Use of variable(re-use)
TYPE $t_i finteger type

St d [double type

$t by byte type

St £ float type

$t 1 Long type

$t sh Short type

8t b byte type

321

St S

$t C
Sv_{Sequence
declaration }

String type
IChar type

Sequence of

declaration Sequence of declaration

As in the above tables, a basis for the material to
analyze the type of illegal copying can be obtained to
change the location of the variable, change the data type
and substitute the variable, In addition to changing the
name of variable through the diversity of pattern symbol
by the entity.

The systemic symbol by the pattern allows a consistent
expression of more concrete language, namely, the
keyword and statement, which are the basic elements of
language, and the overall generalized picture of
variables, enabling the judgment on whether it is
illegally copied.

3.3 Speculative Analysis stage

The method call should be analyzed according to the
order that the method is called by generating the event
after the program is executed because some of it is
dynamically called through the event occurred by the
user. However, it should be analyzed through inferential
method because of the time limit and the required
personnel. Under the inferential method call, another
method call is sought within the called method by
searching for the method that is called within the main
of program.

The following is the basic algorithm:

~ (D Remove other code except the code related to the
method call,

@ Search for the main method,

@ Search for the method called within the main
method,

@ Search for another method within the called
method,

® Repeat the process of @~@ in the above,

® Repeat the process of @ if there is no more
method call.

1

Source Code Msthod Call Graph Patiern Matching

public void AAAN{
BBB():
}
public void BBB({
i)
{
[eleleit})
1
else
{
[sielel¢]

AAA Level = 0 SM_1
BBB Level =1 $M_2
CCC Leve) = 2 $M_3
00O Level = 2 $M_4
B88B[Recursive] Level = 1 $MA_1

}
public void CCCO(}

pubtic void ODD({ Main calls AAA() and AAA() calls BBB(), and then BBB() calls CCC{} and
BBBO: DDD(bstween the controiling statement of iff }~eise{}. At this time CC ()
} and DDO{} have the same level and CCC() has no more method call, and
. . DDD(} cals BBB(). At this time the call is seli-call and the method call
D”DL':(‘;"'G main({ comes 1o an end.
A H

1

Fig. 2. Function (Method) Call Graph

Fig. 2 shows a simple example of figuring out the
sequence of the method call.

322

It could be found more easily and more accurately
whether it is an illegal copy, by matching the call
sequence of method and function.

Table 10. Method (Function) Pattern Symbol

. Pattern
ntity Symbol Means
M i ethod called at ith
$MR i ith method that was self-called
Method SE i ith method called by the external
— file or class
SER ; ith method self-called by external
= file or class
SF L ;(;op function such as for, while,
Function SF C Control function such as if]
- Ewitch, etc

In the event of referring to the external class, the
sequence of method call can be figured out in the same
way as the algorithm in the above by testing the input
file folder and import text. Once the sequence of method
call is figured out, the function call inside the method
has to be figured out. The function call means the
controlling text or branching statement such as if, for,
while, switch in the method. It is not easy to change the
sequence of the function call when copying programs
because it is subject to a strict rule of grammar. In this
regard, the comparison of the function call in the wake
of the method call can lead to the judgment on whether
it is a illegal copy.

4. System and

Experiment

Implementation

In this experiment, the result of CodeMatch[11] that is
development by Zeidman Consulting, Windiff[12]
included in the tools provided by Microsoft Visual
Studio and automatic detection system of software copy
using pattern suggested in this thesis.

The following is comparative list to decide whether to

copy or not.

— Change of variable's position, change of variable's
type, and replacement of variable,

— Change several sentences to a sentence,

— Input of dummy code, change of sentence's position.

CodeMatch compares two source codes by the 5 items
below and output the result.

. — Matching Source Code Lines(output the line number

that is accurately accord between two source codes),
— Matching Comment Lines(output the line number
that comments between two source codes are accord),
— Matching Semantic Sequences(output the line
number that functions same with the two source
codes),

— Matching Words(output the word that is accord
between two source codes),

— Matching Partial Words(output the word that is
partially accord between two source codes).

However, the matching Semantic Sequences function in
CodeMatch is so weak, even though it is so important, it
is decided not to detect properly in case of changing
several sentences among several sentences in two source
codes into a sentence, inputting unrequired dummy code
in the middle of source code, changing the position of
sentence, changing the position of variable, changing
data type of variable, and replacing variable etc.

Windiff extracts same name and similar name by
analyzing pile structure using directory comparison in
each model, and decides whether to copy or not based
on it. However, in case of inputting useless dummy code,
it cannot sort out if it is copied or not in the case of
correcting several sentences into a sentence.

Plsgiarism detection rate of each system

M CodeMateh
Windiff
CProposition System

Changs of Changeof Replcementof Change several Input of dumrny
varable’s position variabk's type variable Sertences to & code
sentence
Comparative List

3888

Detection Rate(%)

883888

3

o

Fig. 3. Result of each comparative list

Fig. 3 is the result of each comparative list. Rather than
CodeMatch and Windiff, system suggested in this thesis
has better function of sorting out whether to copy or not.
I think that the weak points that is not properly detected
in CodeMatch and Windiff can be complemented and
whether to copy or not can be decided more accurately
in more parts by systemizing the symbol according to
several patterns suggested in this thesis.

5. Conclusion and future research

The plagiarism of software is taking various forms in the
rapidly-developing software field, and the number of
cases involving the review of plagiarism is also
increasing. Under these circumstances, a lot of tools
have been developed to automatically detect such
plagiarized programs. However, devices to detect such
plagiarism using more diverse, detailed system, is
required to detect a lot of plagiarized program language
and more detailed and sophisticated plagiarism.

This dissertation analyzes a variety of problems with
current detecting tools and also analyzed a system that
applied the pattern matching system to develop a precise
tool designed to detect the plagiarism. In addition to that,

323

this dissertation presented a system that has a concept
more advanced that the current pattern matching system.
The automatic detecting tool, presented here, will »lay
an important role for an objective and precise detecting
by providing the testing person with the result from the
detection of plagiarism at various levels and in various
fields.

In the future, various methods such as graphs and ckarts
should be defined and designed for more objective and
precise reporting of the result as to the plagiarism
detected through various methods and stages presented
here, and in addition to that, more precise interface
should be designed to allow the testing persor to
conduct various tests without problems.

References

[1] http://www.plagiarism.org.

[2] professor club, http://www.gyosuclub.com

[3] http://www.jplag.de

[4] http://www.mccabe.com

[5] Snatanu Paul “SCUPLE : A Reengineer’s Tool for Source
Code Search”, University of Aarhus.

[6] Made Sign Ager, Oliver Dancy, and Henning Korsholm
Rohde “Fast Partial Evaluation of Pattern Matching in
Strings” Department of Computer Science University of
Aarhus.

[7] Jun Myung-Jac “Constitution of mutual similar table
between key words for copy detection” Pusan National
University.

[8] J. t. oh’s homepage. http://user.chollian.net’jtoh/bioinfo/
bio_ain.htm.

[9] Michael J. Wise. YAP3:Improved Detection of similarities
in computer program and other texts. University of Sydaey,
Australia.

[10] Greg Michaelson, “Automatic analysis of functional
program style”, ASWE’96 IEEE.

[11] http://www.zeidmanconsulting.com.

[12] http://msdn.microsoft.com/library/en-us/tools/windiff.asp.

