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ABSTACT

In this paper, we introduce the backward solution of nonlinear wave equation for denoising. The PDE method is approved abou: 4
PSNR value compare with any convolution method. In neuro images, denoising process using proposed PDE is good about 0.2%

increased Voxel Region
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|. Introduction

Denosing is the process with which we reconstruct a signal
from a noisy one. We know kernel estimators or spline estimators
do not resolve local structures well enough. This is necessary
when dealing with signals that contain structures of different
scales and amplitudes such as neurophysiological signals. When
Fourier based signal processing, we arrange our signals such that
the signals and any noise overlap as little as possible in the
frequency domain. But this linear filtering approach cannot
separate noise from signal where their Fourier spectra overlap.
The noise overlap as little as possible in the frequency domain
and linear time-invariant filtering will approximately separate
them. As a non-linear method, this idea is to have the amplitude,
rather than the location of the spectra is as different as possible
for that of the noise. This allows shrinking of the amplitude of the
transform to separate signals or remove noise. One such
traditional problem in image restoration is that of reconstructing a
noisy image, in which the resultant image should faithfully
represent the original. Some nonlinear past efforts can be found
in [1-4]. Here the motivation is to apply a fast and efficient
method, based on nonlinear variational formulation and PDEs, to
perform denoising in a singe large time step. Let us assume that
during an image acquisition stage, the original image is noised by
a known point-spread function (PSF). The image degradation
model is of the form

f(x; y)=(d * u)(x; y) + n(x; y)
where u(x; y) is the desired original image, d is the known PSF,
denotes the two-dimensional convolution, f is the observed
degraded image, and n denotes the additive noise that is present
in that image. By advancing the following PDE to its steady-state
solution
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[5].
In this paper, we introduce the backward solution of nonlinear
partial differential equation for denosing as the nonlinear Klein
Gordon equation
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where A is the Laplacian operator in R?, V. is the

- Au +V _ (u) =

derivative of the "Newtonian potential function” p,and f isa

source term independent of the solution %, in various areas of
optical physics refer to [6]

I1. Backward Solution
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A beam propagates and takes an image through the lens. In this
case, we consider the image is confused by any other rays. That is,
this image is not original objects. We can use backward solution
of nonlinear wave equation as (1). As a backward solut:on, for
any time t we compute a given equation then we get a solution
t=0 as in Figure.1.

Figure.1. At t=0 as bottom is backward solution.

We reset the equation (1) as
V. (u) =du*nu*u = dnu’ @)

where d is blurring factor and n is noising factor. Then we get
from (1)
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By using Lagrange polynomial interpolation such that let
I(x) be an interpolation function with n-node X; of an
arbitrary function f(x), if we need an interpolation for F(x)?s
then we shall use f (xi)3 I(x) instead of J(x)* where

](x)=z f(x)I(x), Wwe can get the numerical solutions

where / (x) is an- degree Lagrange polynomial with N +1
nodes as
-1 =Xy <X <X, <...<Xy =1 We can get
N
u (x,0) = 3 a,(1),(x)
=0
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i=012,..,N.

As for stability, we would like to approximate the solution

of the following problem
o'u  9'u .
6t2_6x2+lu'u=f

The solution 2" (x,2) of the Lagrange approximation of this

problem is for all t > 0 a polynomial of degree N in X ., which

iszeroat X = %1 and satisfies the equations,
we obtain
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Applying Gronwall's inequality we complete the proof.
This theorem shows the stability of the approximate solution of
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As for convergence, we may assume that m > 2.
Let

M=CN™||u,|
clearly M 50 as N > .

H™2(-11)

1 d , 1d
v It Py_se DL, o S lle

1 1
< EMZ + 5 | Py_,e (£) ”iw(—l,l)

where P is a projection and e is an
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Gronwall's inequality we conclude the process.

we know that ||e,(0)[P<c]le, |

Ill. Experimental Results

and applying

We can control the factor d or n, then the deblurring image and
the denoising image are get out. In Fig.2, we show deblurred
image when t=0.01 and 100" iterations, in this right image (a) we

can see some trees and in (b) some hairs.

290

(b) We see some hairs.
Figure.2 Left is blurred image and right is deblurred image

If n is emphasized, we get denoised image as in Figure.3. The
right image is denoised t=0.01 and 100™ iterations..

T

Figure.3 Left is noised Image and right is denoised image

The PSNR is computed by using
255

PSNR=20log,

where O is the root mean squared error. We show the PSNR of
the denoised image from t=0.01 to t=0.001 with step 0.1 and
200" terations in Figure.4 and t=0.001 in Figure.5.
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Figure.4. Upper line is convolution type denoised and lower
line is PDE type denoised PSNR when t=0.01.

Figure.5. . Upper line is convolution type denoised and lower
line is PDE type denoised PSNR when t=0.001.

We can apply this method to SPM for fMRI data, in Figure. 6 we
show denoised neroimage, (a) is not denoised, (b) is denoised.

Right
v contrasi(s)

(a) Not denoised ICA-SPM image
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(b) Denoised ICA-SPM image
Figure.6. Denoised image is good about 0.2% Voxel Region
increased

IV. Conclusion

. In this research, the PDE method is approved about 4 PSNR
value compare with any convolution method. In neuro image
Denoising Process using proposed PDE is good about 0.2%
increased Voxel Region
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