Object-based Multimedia Contents Storage for Mobile Devices

Young Jin Nam, Min-Seok Choi, In-Gil Nam
School of Computer and Information Technology
Daegu University, South Korea
yjnam@daegu.ac.kr

Abstract - Mobile devices, such as PDAs, portable multimedia players, are more likely to encompass large
storage devices with prevalance of high-quality multimedia contents. This paper proposes an object-based
multimedia contents storage architecture that employs the object-based storage device model and the iSCSI
protocol. It also provides a multimedia content player that operates directly with the proposed storage
architecture. We implement both the proposed storage architecture and the multimedia content player upon
the Linux environment. Performance evaluation by playing MP3 multimedia contents reveals that the
proposed storage architecture reduces the total power consumption by 9%, compared with an existing
networked storage. This enhancement is mainly contributed to the fact that a large portion of the file system
is moved into the object-based multimedia contents storage from the mobile device.

Keywords: Object-based IP storage, multimedia contents, mobile devices, power consumption

1 Introduction

Technology advance in processors, codec, wireless
network, I/O peripherals, enables high-quality multimedia
contents to play on mobile devices, such as PDAs,
portable multimedia players, etc. The mobile devices are
mostly equipped with a hard disk or flash memory to
contain the multimedia contents. Of these, the hard disk
has currently become more commonplace, compared with
the flash memory, because of its cost-effectiveness.
However, the hard disk consumes more power, as it spins
a spindle motor at a high speed and moves read/write
heads mechanically.

The increase in Internet access speed from the
mobile devices enables other alternatives to store
multimedia contents: the network-attached storage(NAS)
and the IP-based storage [1]. They can obviate any limits
in storage capacity. However, the mobile devices require
to have additional software components, such as NFS,
CIFS, and a protocol stack, called iSCSI [1,2] to convey
the SCSI protocol over IP network. Note that they operate
upon the TCP/IP protocol stack. The NAS systems are
similar to dedicated NFS or CIFS servers. They provide
storage applications with file-level storage services.
However, since the NAS server is involved in each file
service between the storage applications and the
underlying storage device, it suffers from scalability. This,
is, as the storage capacity grows, the overhead of the NAS
server increases proportionally. By contrast, the IP storage
provides storage applications with block-level storage
services over the IP-based storage area network(SAN).

* This research was in part supported by POSTECH CMEST IT
Research Center and in part by NURI PoP-iT Research Fund.

31

Typically, it is known that the IP storage guarantees good
scalability in terms of storage performance and capecity.
However, it does not provide enough interfaces to upper-
level storage applications. In result, either storage
applications should take care of a part of file-level
services, for example, file locking, or they should require
a special file system called a SAN file system. Note that
the IP storage operates over IP-based SAN, as shown in
Figure 1, by using the SCSI protocol, the iSCSI protocol,
and the TCP/IP protocol.

Host system
Host system

Application
Application
File System

f
| iSCSI-based P Storage
Protocol
SCS Initutor ===~ Pe SCS3 Turget j

Dnsk Device
Dravers Data 1] Object Interface

System call wterface

File System:

User Module Obyect locs 10n

Access conrol
ol N
=m--e SCSI Tarper

Acta
P b

TCP
i3 P

File System Xt
Storage Module v

Internat D] Block L0 Manager

Netwaork Card
 — Intemal Disks

1P Network
Object-based Storage

Figurel. iSCSI-based IP storage Figure2. Object-based storage
Recently, the object-based storage device(OSD) that
exploits both advantages of the NAS server and the IP
storage has been proposed as an ecmerging storage
technology [3,4]. The OSD treats user data or filss as
objects with attributes. For example, a multimedia ccntent
like a MP3 file, a database table, or a data block can be
mapped onto a single object. Much research efforts on
OSD have been underway in many universities and
research organizations to design more intelligent OSD

architectures [3], OSD-supporting file systems [5,6], QoS-
guaranteed OSD {7], etc. Meanwhile, T10/SCSI ratified
OSD command as a new SCSI command set in 2004 (8].

This paper designs object-based multimedia contents
storage based on the object-based storage device(OSD)
architecture. It also devises a muitimedia content player
operating directly with the proposed object-based
multimedia content storage. Note that both the multimedia
contents player and the OSD communicate with each
other using the OSD SCSI commands and the iSCSI
protocol. The remainder of this paper is organized as
follows. Section 2 describes the proposed storage
architecture. Section 3 provides the results of performance
evaluation by running MP3 multimedia contents. Finally,
this paper concludes with Section 4.

2 The Proposed Storage Architecture

Figure 3 shows the I/O environment of the proposed
storage architecture. The main software components of
the object-based multimedia contents storage (also called
object-based IP storage) include an extended target-mode
iSCSI driver that contains an embedded file system, and
disk device drivers to handle the internal disks. The
extended target-mode iSCSI driver (briefly, the target-
mode iSCSI driver) basically works upon the TCP/IP
stack and processes OSD SCSI commands. The embedded
file system exists to serve a set of OSD SCSI commands
that require file-level services, such as object creation and
object open.

—————
Mobile Device |

. I
Multimedia !

Content Player J

Object-based 1P Storage

Extended

|
l
e {
i
I
|
I

Extended _’
Initiator-mode & « Target-mode Dlsk Device

iSCSI Driver IP Netwo iSCSIDriver + Drivers |
—_—

Tep Wirless e TE? |
Access fid .

m‘ll | o e el

Netweor vk Card | rd { ok Card . Internat Disks
3

Figure 3. I/O einvironment of the proposed storage architecture

The major software components of the mobile
device encompass an extended initiator-mode iSCSI
driver and the multimedia content player. The extended
initiator-mode iSCSI driver (briefly, the initiator-mode
iSCSI driver) sends SCSI commands to its corresponding
target-mode iSCSI driver over the IP network. The
multimedia content player is in charge of reading a
multimedia content file from the object-based IP storage
and then playing the file at the mobile device. In what
follows, we will describe specific architectures of the key
components that are the initiator-mode iSCSI driver, the
target-mode iSCSI driver, and the multimedia content
player.

32

2.1 Initiator-mode iSCSI Driver

The initiator-mode iSCSI driver exists as a form of a
kernel device driver within the mobile device. This driver
can process a set of OSD SCSI commands, as well as the
existing SCSI command set. Figure 4 shows a structure of
a typical OSD command descriptor block (CDB).

Bit
By 7 16 |s 4 3] 2 1 0
0 OPERATION CODE(7Fh)

1 CONTROL

2.5 RESERVED

6 SECURITY

7 ADDITIONAL CDB LENGTH(N-7)

3-9 SERVICE ACTION

10 OPTION BYTE |

11 OPTION BYTE 2

12-15 GROUP ID

16-23 USER ID

24-27 SESSION ID

28-35 LENGTH

36-43 OFFSET

4447 GET_ATTRIBUTES_PAGE

48-51 GET LIST LENGTH

52-55 GET _ALLOCATION LENGTH

7275 SET_LIST LENGTH

Figure 4. Structure of a typical OSD command descriptor block

The OPERATION CODE(7Fh) distinguishes the
OSD CDBs from the existing SCSI CDBs, and the
SERVICE ACTION field represents a specific OSD SCSI
command. The GROUP ID, the USER ID, and the
SESSION ID respectively identify specific group, user,
and session to conduct the given SERVICE ACTION. The
LENGTH and the OFFSET represent the length and the
offset of data wihtin an object to read and write. The
remaining fileds are related to the return values for the
associate command. The initiator-mode iSCSI driver
supports the following SERVICE ACTION for its upper-
level application, the multimedia content player:
CREATE GROUP, CREATE, WRITE, READ, REMOVE,
and REMOVE GROUP. The specific structures of those
commands can be found in the OSD standard [8].

2.2 Target-mode iSCSI Driver

The target-mode iSCSI driver operates in the object-
based IP storage. Similar to the initiator-mode iSCSI
driver, it can handle a set of OSD SCSI commands, as
well as the existing SCSI command set. This driver first
receives the set of OSD commands sent from its
associated initiator-mode iSCSI driver. Next, it decodes
the received OSD SCSI commands and processes it
according to its definition in the standard [8]. Table 1
summarizes how to process each of the received OSD
SCSI commands that include CREATE GROUP,
CREATE, WRITE, READ, REMOVE, REMOVE

GROUP. Managing objects requires an embedded file
system within the object-based IP storage. Thus, our
implementation employs a simple file system that works
at the user level, where each object is treated as a file.

Table 1. Summary of processing the received OSD commands

Command Behavior Description
CREATE | Generate a unique GROUP ID, create a group object
GROUP of the GROUP ID, and return the GROUP ID
Generate a unique USER ID within a given GROUP
CREATE 1D, create a user object of the USER ID, and return
the USER ID
Find the user object associated to the given GROUP
WRITE ID and the USER ID, and write data received from
the initiator-mode iSCSI driver into the position
pointed by the given offset
Find the user object associated to the given GROUP
READ ID and the USER ID, read into a buffer data at the
position pointed by the given offset, and transfer the
buffered data to the initiator-mode iSCSI driver
Find the user object associated to the given GROUP
REMOVE ID and the USER ID, and remove it
REMOTE | Find the group object associated to the given
GROUP GROUP ID, and remove it

2.3 Multimedia Content Player

The multimedia content player is mainly responsible
for reading a multimedia content file from the object-
based IP storage and playing it at the mobile device. The
current version of the multimedia content player supports
only MP3 audio files. In addition, we provide a couple
of special commands to write/remove a MP3 file
into/from the object-based IP storage.

We will start by explaining the special commands to
write/remove a MP3 file. The write command not only
stores a MP3 file into the object-based IP storage, but also
creates a 24-byte file called a list file, as shown in Figure
5. The list file consists of a 4-byte magic number, 4-byte
GROUP ID, 8-byte USER ID, and 8-byte file size
information. The magic number informs the player that
the MP3 file is stored at the object-based IP storage, not at
the local file system. As previously described, a pair of
the GROUP ID and the USER ID identifies the object
associated to the MP3 file. Writing the MP3 file employs
the OSD commands of OSD_CREAT GROUP and
OSD_WRITE. Note that, while the obtained GROUP ID
by issuing the OSD_CREAT GROUP should be stored in
the metadata server in the OSD architecture, our
implementation co-locates the metadata server with the
storage client(mobile devices). In addition, all the
GROUP IDs are stored in the “gid.dat” file. The remove
command deletes the object within the object-based IP
storage associated to the MP3 file by using the OSD
commands of OSD_REMOVE command. Figure S and 6
depict how to write and remove a multimedia content file

33

that is mapped into an object within the storage. Note that
the root object is created at the initialization time for the
object-based IP storage. Subsequently, all the other user
objects become descendants of this root object.

Initiator (Mobile Device) Target (Object-based IP Storage)
‘ C e . Root Object
‘'« -OSD_CREATE_GROUP; - i o o -

; P PR,
osd_create —_— —t
. groun) mx[gu’ j | trout
. B]
. :
=
[s e e — “Targes
~mode Jmade |
- s i$CSL iscst H
co _OSD WRITE ¢ Driver * priver . /¢ H ' .
I iatAsieia R ; i

¢, _..--F=Create User Object
Les <

P © -

4 Store the MP3 File

Figure 5. Writing a multimedia content (MP3) file into the object-based
IP storage

Initiator (Mobile Device)

OSD_REMOVE -~
Read USER 1D & GROUP ID from
osd_<fill name>,mp3

osd_remove()

o

. - OSD_REMOVE_GROUF |

. chd GRO Pjrglyﬂgldﬂdnl . -“Rcmovc User Object

—_—

osd_remove_group()
N . Remoave the MP3 File

Figure 6. Removing a multimedia content (MP3) file from the object-
based IP storage
The implementation of the multimedia content
player revised a well-known command-line MP3 player in
Linux, mpg321 [9], as shown in Figure 7.

Command Line
NS
N
N
N

~ /

Source on the network) Tl osdfile

- Stdin [Localfile "«

=7 + . S Y

raw open() stremp(file.-"y=0 apen(} osd_open)
- 1 T H
hetp open() : ! '
fip open() [: :
v H 4 H

mad_decoder_init() Decoding initiafization

|

mad_decoder_run(} Stant decoding
Pl s

" network
Stdin

- P 1
.
read_from fd() read_from_mmap()‘
; Local
y

mad_stream_buffer(} Set strcam butfer pointers

toosd
+

ao_shutdown() Library teardown

Figure 7. Architecture of the multimedia content (MP3) player

The multimedia content player can communicate directly
with the underlying object-based TP storage via OSD
SCSI commands. It plays MP3 files either at the local file
system or at the object-based IP storage. We added the

osd_open function to open the MP3 file stored at the
object-based IP storage when the magic number is
detected from the MP3 file. In addition, we added the
read_from_osd() function to read a stream of the MP3 file
from the object-based IP storage via OSD SCSI
commands.

3 Performance Evaluation

We compare the performance of the proposed
storage (the object-based IP storage) architecture with the
NFS network file system in terms of power consumption
by running a MP3 multimedia content file. The consumed
power is measured in an indirect manner by observing the
CPU utilization. Our current implementation is fully
operating upon the Linux environment on wired IP
network, as shown in Figure 8. Currently, we have been
porting our implementation onto a mobile/wireless
environment that consists of PDAs and wireless network.

/ e
— e)
Initiator N
(Mobile Device) \@psl? Network (Bthemel)> Target |
e - \ N / (Otyect-
Based i
IP Storage) |
1
: 41.5C [CPURaLSGR:
Memory 384MB , Memory ‘és“MB_. o
oIs . RedHat9) [OA) ! RedHat 9
(Kemel24208) 4 Kemet24208)

Figure 8. H/W and S/W environment of our current implementation

For performance evaluation, the same MP3 file is
initially stored into the NFS file server and the object-
based IP storage. Next, we run the MP3 file at each
system, while measuring the CPU utilization, the memory
utilization, and the kernel time. We repeated this
experiment for each system more than ten times and
averaged out the obtained results. Note that the kernel
time represents the time spent in running in the kernel
mode to play the MP3 file. As shown in Table 2, the
proposed storage architecture improves an amount of
power consumption by 9%, compared with the NFS file
server. This gain is mainly attributed to the fact that a
large portion of the file system source code is moved into
the object-based IP storage itself. Observe that the kernel
time of the proposed storage architecture is only half of
the NFS file server.

Table 2. Summary of the obtained performance results

NFS File Server The propose‘d
storage architecture
CPU utilization 4.7% 4.3%
Memory 1.98% 2.1%
utilization
Kemel time 0.2sec. 0.1sec

34

To summarize, by applying the proposed storage
architecture to a mobile environment, we can expect a
significant amount of power saving by reducing the CPU
utilization within the mobile device.

4 Concluding Remarks

We, in this paper, designed object-based multimedia
contents storage (also described as object-based IP
storage) and its associated multimedia content player for
mobile devices. We also verified its effectiveness by
implementing prototypes under desktop environments.
The results of the performance evaluation revealed that
the proposed storage architecture is very relevant to the
mobile devices equipped with limited battery. Currently,
we have been changing the desktop environment to the
mobile/wireless environment, and also upgrading the
Linux kernel version to 2.6. In addition, we plan to
expand the functionality of the current media content
player to run MPEG4-encoded video files.

References

(11 T. Clark, IP SANs: A Guide to iSCSI, iFCP, and
FCIP Protocols for Storage Area networks.
Addition-Wesley, 2002.

[2] K. Meth and J. Satran, "Design of the iSCSI

protocol,” Proceedings of the Mass Storage Systems

and Technologies/20th IEEE/l11th NASA Goddard

Conference, April 2003.

[3] M. Factor, et al, "Object storage: The future

building block for storage systems,” Proceedings of

the 2nd International IEEE Symposium on Mass

Storage Systems and Technologies, June 2005.

Erik Riedel(Seagate Research), Object-based storage
device(OSD) basics: http://www.snia.org/education/
tutorials/spr2005/storage, 2005.

(4]

http://www lustre.org.
(6] F. Wang, et al.,, “OBFS: A file system for object-
based storage devices,” Proceedings of the 21st
IEEE 12th NASA Goddard (MSST2004)
Conference on Mass Storage Systems and
Technologies, April 2004.

[71 Y. Lu, D. Du, and T. Ruwart, “QoS provisioning
framework for OSD-based storage system,”
Proceedings of the 22nd IEEE — 13th NASA
Goddard (MSST2005) Conference on Mass Storage

Systems and Technologies, April 2005.

OSD Standard ver.1.0(rev.10): http://www.t10.0org/
ftp/t10/drafts/osd.

{91 mpg321, http://sourceforge.net/projects/ mpg321.

